- -

Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem

Mostrar el registro completo del ítem

Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem. Journal of the Spanish Society of Applied Mathematics. 70(1):1-10. https://doi.org/10.1007/s40324-015-0037-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66351

Ficheros en el ítem

Metadatos del ítem

Título: Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem
Autor: Cordero Barbero, Alicia Franqués García, Antonio María Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, a parametric family of iterative methods for solving nonlinear systems, including Homeier’s scheme is presented, proving its third-order of convergence. The numerical section is devoted to obtain an ...[+]
Palabras clave: Nonlinear system , Iterative method , Order of convergence , Bratu’s problem
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Spanish Society of Applied Mathematics. (issn: 2254-3902 )
DOI: 10.1007/s40324-015-0037-x
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/s40324-015-0037-x
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES/
Agradecimientos:
This research was supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-02.
Tipo: Artículo

References

Abad, M. F., Cordero, A., Torregrosa, J. R.: Fourth-and fifth-order for solving nonlinear systems of equations: an application to the global positioning system, Abstr. Appl. Anal. (2013) (Article ID 586708)

Andreu, C., Cambil, N., Cordero, A., Torregrosa, J.R.: Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach, Abstr. Appl. Anal. (2013) (Article ID 960582)

Awawdeh, F.: On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 54, 395–409 (2010) [+]
Abad, M. F., Cordero, A., Torregrosa, J. R.: Fourth-and fifth-order for solving nonlinear systems of equations: an application to the global positioning system, Abstr. Appl. Anal. (2013) (Article ID 586708)

Andreu, C., Cambil, N., Cordero, A., Torregrosa, J.R.: Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach, Abstr. Appl. Anal. (2013) (Article ID 960582)

Awawdeh, F.: On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 54, 395–409 (2010)

Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)

Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. France 42, 113–142 (1914)

Buckmire, R.: Applications of Mickens finite differences to several related boundary value problems. In: Mickens, R.E. (ed.) Advances in the Applications of Nonstandard Finite Difference Schemes, pp. 47–87. World Scientific Publishing, Singapore (2005)

Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)

Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Trans. Am. Math. Soc. Ser. 2, 295–381 (1963)

Homeier, H.H.H.: On Newton-tyoe methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)

Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Comm. 181, 1868–1872 (2010)

Kanwar, V., Kumar, S., Behl, R.: Several new families of Jarratts method for solving systems of nonlinear equations. Appl. Appl. Math. 8(2), 701–716 (2013)

Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. with Appl. 67, 26–33 (2014)

Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)

Sharma, J.R., Guna, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)

Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)

Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)

Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem