- -

Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes

Show full item record

Nandi, M.; Mondal, J.; Sarkar, K.; Yamauchi, Y.; Bhaumik, A. (2011). Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes. Chemical Communications. 47(23):6677-6679. doi:10.1039/c1cc11007a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66429

Files in this item

Item Metadata

Title: Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes
Author: Nandi, Mahasweta Mondal, John Sarkar, Krishanu Yamauchi, Yusuke Bhaumik, Asim
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
[EN] Post-synthesis modification of SBA-15 has been carried out to design highly ordered acid functionalized hybrid mesoporous organosilica, AFS-1. This material has been used as an efficient heterogeneous organocatalyst ...[+]
Subjects: One-Pot Synthesis , Michael addition , Catalysis , Derivatives
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c1cc11007a
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/ 10.1039/c1cc11007a
Thanks:
JM wishes to thank CSIR, New Delhi, for Senior Research Fellowship.
Type: Artículo

References

Wang, H., Lu, L., Zhu, S., Li, Y., & Cai, W. (2006). The Phototoxicity of Xanthene Derivatives Against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae. Current Microbiology, 52(1), 1-5. doi:10.1007/s00284-005-0040-z

Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S., & El-Gazzar, A. B. A. (2008). A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 18(16), 4538-4543. doi:10.1016/j.bmcl.2008.07.042

Bass, M., Deutsch, T. F., & Weber, M. J. (1968). FREQUENCY‐ AND TIME‐DEPENDENT GAIN CHARACTERISTICS OF LASER‐ AND FLASHLAMP‐PUMPED DYE SOLUTION LASERS. Applied Physics Letters, 13(4), 120-124. doi:10.1063/1.1652536 [+]
Wang, H., Lu, L., Zhu, S., Li, Y., & Cai, W. (2006). The Phototoxicity of Xanthene Derivatives Against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae. Current Microbiology, 52(1), 1-5. doi:10.1007/s00284-005-0040-z

Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S., & El-Gazzar, A. B. A. (2008). A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 18(16), 4538-4543. doi:10.1016/j.bmcl.2008.07.042

Bass, M., Deutsch, T. F., & Weber, M. J. (1968). FREQUENCY‐ AND TIME‐DEPENDENT GAIN CHARACTERISTICS OF LASER‐ AND FLASHLAMP‐PUMPED DYE SOLUTION LASERS. Applied Physics Letters, 13(4), 120-124. doi:10.1063/1.1652536

Kuwana, E., & Sevick-Muraca, E. M. (2003). Fluorescence Lifetime Spectroscopy for pH Sensing in Scattering Media. Analytical Chemistry, 75(16), 4325-4329. doi:10.1021/ac034059a

McNamara, K. P., Nguyen, T., Dumitrascu, G., Ji, J., Rosenzweig, N., & Rosenzweig, Z. (2001). Synthesis, Characterization, and Application of Fluorescence Sensing Lipobeads for Intracellular pH Measurements. Analytical Chemistry, 73(14), 3240-3246. doi:10.1021/ac0102314

Liu, Y.-H., Tao, X.-Y., Lei, L.-Q., & Zhang, Z.-H. (2009). Fluoroboric Acid Adsorbed on Silica-Gel–Catalyzed Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthene Derivatives. Synthetic Communications, 39(4), 580-589. doi:10.1080/00397910802412842

Huang, X., & Zhang, T. (2010). Cascade Nucleophilic Addition−Cyclic Michael Addition of Arynes and Phenols/Anilines Bearing Ortho α,β-Unsaturated Groups: Facile Synthesis of 9-Functionalized Xanthenes/Acridines. The Journal of Organic Chemistry, 75(2), 506-509. doi:10.1021/jo902311a

Dabiri, M., Baghbanzadeh, M., Nikcheh, M. S., & Arzroomchilar, E. (2008). Eco-friendly and efficient one-pot synthesis of alkyl- or aryl-14H-dibenzo[a,j]xanthenes in water. Bioorganic & Medicinal Chemistry Letters, 18(1), 436-438. doi:10.1016/j.bmcl.2007.07.008

Das, B., Ravikanth, B., Ramu, R., Laxminarayana, K., & Rao, B. V. (2006). Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes. Journal of Molecular Catalysis A: Chemical, 255(1-2), 74-77. doi:10.1016/j.molcata.2006.04.007

Bertelsen, S., & Jørgensen, K. A. (2009). Organocatalysis—after the gold rush. Chemical Society Reviews, 38(8), 2178. doi:10.1039/b903816g

Franzén, J., & Fisher, A. (2009). Asymmetric Alkaloid Synthesis: A One-Pot Organocatalytic Reaction to Quinolizidine Derivatives. Angewandte Chemie International Edition, 48(4), 787-791. doi:10.1002/anie.200805130

Tan, B., Zeng, X., Lu, Y., Chua, P. J., & Zhong, G. (2009). Rational Design of Organocatalyst: Highly Stereoselective Michael Addition of Cyclic Ketones to Nitroolefins. Organic Letters, 11(9), 1927-1930. doi:10.1021/ol900330p

Bravo, N., Mon, I., Companyó, X., Alba, A.-N., Moyano, A., & Rios, R. (2009). Enantioselective addition of oxindoles to aliphatic α,β-unsaturated aldehydes. Tetrahedron Letters, 50(48), 6624-6626. doi:10.1016/j.tetlet.2009.09.038

Piovesana, S., Schietroma, D. M. S., Tulli, L. G., Monaco, M. R., & Bella, M. (2010). Unsaturated β-ketoesters as versatile electrophiles in organocatalysis. Chemical Communications, 46(28), 5160. doi:10.1039/c003296d

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785

Zeidan, R. K., Hwang, S.-J., & Davis, M. E. (2006). Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids. Angewandte Chemie International Edition, 45(38), 6332-6335. doi:10.1002/anie.200602243

Margelefsky, E. L., Zeidan, R. K., & Davis, M. E. (2008). Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 37(6), 1118. doi:10.1039/b710334b

El-Safty, S. A., Mekawy, M., Yamaguchi, A., Shahat, A., Ogawa, K., & Teramae, N. (2010). Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chemical Communications, 46(22), 3917. doi:10.1039/c001654c

Fiorilli, S., Onida, B., Bonelli, B., & Garrone, E. (2005). In Situ Infrared Study of SBA-15 Functionalized with Carboxylic Groups Incorporated by a Co-condensation Route. The Journal of Physical Chemistry B, 109(35), 16725-16729. doi:10.1021/jp045362y

Gao, J., Liu, J., Bai, S., Wang, P., Zhong, H., Yang, Q., & Li, C. (2009). The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. Journal of Materials Chemistry, 19(45), 8580. doi:10.1039/b909002a

Naik, M. A., Sachdev, D., & Dubey, A. (2010). Sulfonic acid functionalized mesoporous SBA-15 for one-pot synthesis of substituted aryl-14H-dibenzo xanthenes and bis(indolyl) methanes. Catalysis Communications, 11(14), 1148-1153. doi:10.1016/j.catcom.2010.06.004

Das, S. K., Bhunia, M. K., & Bhaumik, A. (2010). Highly ordered Ti-SBA-15: Efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. Journal of Solid State Chemistry, 183(6), 1326-1333. doi:10.1016/j.jssc.2010.04.015

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Lim, M. H., & Stein, A. (1999). Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials. Chemistry of Materials, 11(11), 3285-3295. doi:10.1021/cm990369r

Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., & Stucky, G. D. (1998). Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 120(24), 6024-6036. doi:10.1021/ja974025i

Liu, J., Yang, Q., Kapoor, M. P., Setoyama, N., Inagaki, S., Yang, J., & Zhang, L. (2005). Structural Relation Properties of Hydrothermally Stable Functionalized Mesoporous Organosilicas and Catalysis. The Journal of Physical Chemistry B, 109(25), 12250-12256. doi:10.1021/jp0509109

Hatton, B. D., Landskron, K., Whitnall, W., Perovic, D. D., & Ozin, G. A. (2005). Spin-Coated Periodic Mesoporous Organosilica Thin Films?Towards a New Generation of Low-Dielectric-Constant Materials. Advanced Functional Materials, 15(5), 823-829. doi:10.1002/adfm.200400221

Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j

Modak, A., Mondal, J., Aswal, V. K., & Bhaumik, A. (2010). A new periodic mesoporous organosilica containing diimine-phloroglucinol, Pd(ii)-grafting and its excellent catalytic activity and trans-selectivity in C–C coupling reactions. Journal of Materials Chemistry, 20(37), 8099. doi:10.1039/c0jm01180k

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record