Mostrar el registro sencillo del ítem
dc.contributor.author | Martí-Campoy, Antonio | es_ES |
dc.contributor.author | López, Otoniel | es_ES |
dc.contributor.author | Rodríguez-Ballester, Francisco | es_ES |
dc.contributor.author | Perez Malumbres, Manuel Jose | es_ES |
dc.date.accessioned | 2016-06-27T09:34:37Z | |
dc.date.available | 2016-06-27T09:34:37Z | |
dc.date.issued | 2015-06-10 | |
dc.identifier.isbn | 9783319192581 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/66520 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19258-1_24 | es_ES |
dc.description.abstract | Discrete Wavelet Transform has been widely used in image compression because it is able to compact frequency and spatial localization of image energy into a small fraction of coefficients. In recent years coefficient sign coding has been used to improve image compression. The potential correlation between the sign of a coefficient and the signs of its neighbors opens the possibility to use a sign predictor to improve the image compression process. However, this relationship is not uniform and constant for any image. Typically, image encoders use entropy coding to compact the wavelet coefficients information. This work analyzes the impact of the input parameters over a genetic algorithm that distributes into contexts (sets) the wavelet sign predictors in such a way that the overall aggregate entropy will be reduced as much as possible and a as a consequence higher compression rates can be achieved. | es_ES |
dc.format.extent | 11 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Advances in Computational Intelligence | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;9094 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Genetic Algorithm | es_ES |
dc.subject | Wavelets | es_ES |
dc.subject | Image coding | es_ES |
dc.subject | Sign coding | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Applying a Genetic Algorithm Solution to Improve Compression of Wavelet Coefficient Sign | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-319-19258-1_24 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Martí-Campoy, A.; López, O.; Rodríguez-Ballester, F.; Pérez Malumbres, MJ. (2015). Applying a Genetic Algorithm Solution to Improve Compression of Wavelet Coefficient Sign. En Advances in Computational Intelligence. Springer. 276-286. doi:10.1007/978-3-319-19258-1_24 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 13th International Work-Conference on Artificial Neural Networks (IWANN 2015) | es_ES |
dc.relation.conferencedate | June 10-12, 2015 | es_ES |
dc.relation.conferenceplace | Palma de Mallorca, Spain | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-319-19258-1_24 | es_ES |
dc.description.upvformatpinicio | 276 | es_ES |
dc.description.upvformatpfin | 286 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 312136 | es_ES |
dc.description.references | Holland, J.: Adaption in Natural and Artificial Systems. University of Michigan Press (1975) | es_ES |
dc.description.references | Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989) | es_ES |
dc.description.references | ISO/IEC 15444–1: JPEG2000 image coding system (2000) | es_ES |
dc.description.references | Shapiro, J.: A fast technique for identifying zerotrees in the EZW algorithm. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing 3, 1455–1458 (1996) | es_ES |
dc.description.references | Wu, X.: High-order context modeling and embedded conditional entropy coding of wavelet coefficients for image compression. In: Proc. of 31st Asilomar Conf. on Signals, Systems, and Computers, pp. 1378–1382 (1997) | es_ES |
dc.description.references | Taubman, D.: High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing 9(7), 1158–1170 (2000) | es_ES |
dc.description.references | Deever, A., Hemami, S.S.: What’s your sign?: Efficient sign coding for embedded wavelet image coding. In: Proc. IEEE Data Compression Conf., Snowbird, UT, pp. 273–282 (2000) | es_ES |
dc.description.references | Lopez, O., Martinez, M., Piñol, P., Malumbres, M., Oliver, J.: E-ltw: An enhanced ltw encoder with sign coding and precise rate control. In: 2009 16th IEEE International Conference on Image Processing (ICIP) pp. 2821–2824, Nov 2009 | es_ES |
dc.description.references | Schwartz, E.L., Z, A., Boliek, M.: CREW: Compression with reversible embedded wavelets. In: Proc SPIE, pp. 212–221 (1995) | es_ES |
dc.description.references | Deever, A., Hemami, S.S.: Efficient sign coding and estimation of zero-quantized coefficients in embedded wavelet image codecs. IEEE Transactions on Image Processing 12(4), 420–431 (2003) | es_ES |
dc.description.references | Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992) | es_ES |
dc.description.references | Tian, C., Hemami, S.S.: An embedded image coding system baed on tarp filter with classification. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Canada, May 2004 | es_ES |
dc.description.references | Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing. Technical report, IBM Ltd (1966) | es_ES |
dc.description.references | Riordan, J. In: Introduction to Combinatorial Analysis. Princeton University Press (1958) | es_ES |