- -

Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures

Mostrar el registro completo del ítem

Serra, M.; García Baldoví, H.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures. European Journal of Inorganic Chemistry. 2015(25):4237-4243. https://doi.org/10.1002/ejic.201500629

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67016

Ficheros en el ítem

Metadatos del ítem

Título: Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures
Autor: Serra, Marco García Baldoví, Hermenegildo Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In the search for novel photocatalysts for hydrogen production and with the alpha-Fe2O3 photoelectrocatalyst as a recent precedent, we report herein the preparation, semiconductor properties and photocatalytic activity ...[+]
Palabras clave: Iron hydroxyl phosphate , Methanol , Water , Photocatalyst , Hydrogen prodn.
Derechos de uso: Reserva de todos los derechos
Fuente:
European Journal of Inorganic Chemistry. (issn: 1434-1948 ) (eissn: 1099-0682 )
DOI: 10.1002/ejic.201500629
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1002/ejic.201500629
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (MEC) (Severo Ochoa and CTQ20212-32315) and the Generalidad Valenciana (Prometeo 2012/014) is gratefully acknowledged. M. S. thanks the Spanish Consejo ...[+]
Tipo: Artículo

References

Amao, Y. (2011). Solar Fuel Production Based on the Artificial Photosynthesis System. ChemCatChem, 3(3), 458-474. doi:10.1002/cctc.201000293

Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b [+]
Amao, Y. (2011). Solar Fuel Production Based on the Artificial Photosynthesis System. ChemCatChem, 3(3), 458-474. doi:10.1002/cctc.201000293

Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b

Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k

Serpone, N., Lawless, D., & Terzian, R. (1992). Solar fuels: Status and perspectives. Solar Energy, 49(4), 221-234. doi:10.1016/0038-092x(92)90001-q

Abbott, D. (2010). Keeping the Energy Debate Clean: How Do We Supply the World’s Energy Needs? Proceedings of the IEEE, 98(1), 42-66. doi:10.1109/jproc.2009.2035162

Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy, 27(3), 235-264. doi:10.1016/s0360-3199(01)00131-8

Kamat, P. V. (2007). Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C, 111(7), 2834-2860. doi:10.1021/jp066952u

Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729-15735. doi:10.1073/pnas.0603395103

Bard, A. J., & Fox, M. A. (1995). Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 28(3), 141-145. doi:10.1021/ar00051a007

Bensaid, S., Centi, G., Garrone, E., Perathoner, S., & Saracco, G. (2012). Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. ChemSusChem, 5(3), 500-521. doi:10.1002/cssc.201100661

Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645

Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The Hydrogen Economy. Physics Today, 57(12), 39-44. doi:10.1063/1.1878333

Graetzel, M. (1981). Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Accounts of Chemical Research, 14(12), 376-384. doi:10.1021/ar00072a003

Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009

NOWOTNY, J., SORRELL, C., SHEPPARD, L., & BAK, T. (2005). Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 30(5), 521-544. doi:10.1016/j.ijhydene.2004.06.012

Bahnemann, D. W. (2000). Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 26(2), 207-220. doi:10.1163/156856700x00255

Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016

FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001

Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129. doi:10.1016/s0920-5861(99)00107-8

Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013

Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4

Beermann, N., Vayssieres, L., Lindquist, S.-E., & Hagfeldt, A. (2000). Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite. Journal of The Electrochemical Society, 147(7), 2456. doi:10.1149/1.1393553

Bjoerksten, U., Moser, J., & Graetzel, M. (1994). Photoelectrochemical Studies on Nanocrystalline Hematite Films. Chemistry of Materials, 6(6), 858-863. doi:10.1021/cm00042a026

Hu, Y.-S., Kleiman-Shwarsctein, A., Forman, A. J., Hazen, D., Park, J.-N., & McFarland, E. W. (2008). Pt-Doped α-Fe2O3Thin Films Active for Photoelectrochemical Water Splitting. Chemistry of Materials, 20(12), 3803-3805. doi:10.1021/cm800144q

Kay, A., Cesar, I., & Grätzel, M. (2006). New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3Films. Journal of the American Chemical Society, 128(49), 15714-15721. doi:10.1021/ja064380l

Sivula, K., Le Formal, F., & Grätzel, M. (2011). Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem, 4(4), 432-449. doi:10.1002/cssc.201000416

Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., … Grätzel, M. (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436-7444. doi:10.1021/ja101564f

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607

Wang, X., Pang, H., Zhao, S., Shao, W., Yan, B., Li, X., … Du, W. (2013). Ferric Phosphate Hydroxide Microcrystals for Highly Efficient Visible-Light-Driven Photocatalysts. ChemPhysChem, 14(11), 2518-2524. doi:10.1002/cphc.201300331

Song, Y., Zavalij, P. Y., Chernova, N. A., Suzuki, M., & Whittingham, M. S. (2003). Comparison of one-, two-, and three-dimensional iron phosphates containing ethylenediamine. Journal of Solid State Chemistry, 175(1), 63-71. doi:10.1016/s0022-4596(03)00144-0

Song, Y., Zavalij, P. Y., Chernova, N. A., & Whittingham, M. S. (2005). Synthesis, Crystal Structure, and Electrochemical and Magnetic Study of New Iron (III) Hydroxyl-Phosphates, Isostructural with Lipscombite. Chemistry of Materials, 17(5), 1139-1147. doi:10.1021/cm049406r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem