- -

Self-Correlations of Electroencephalograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Self-Correlations of Electroencephalograms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acedo Rodríguez, Luis es_ES
dc.contributor.author Aranda Lozano, Diego Fernando es_ES
dc.date.accessioned 2016-07-05T06:25:30Z
dc.date.available 2016-07-05T06:25:30Z
dc.date.issued 2012
dc.identifier.issn 0891-2513
dc.identifier.uri http://hdl.handle.net/10251/67069
dc.description.abstract A susceptible-infected-susceptible (SIS) cellular automaton model for collective neural interactions proposed recently is revisited. In this model, neurons are simple network nodes with different states: active or firing, and quiescent. The main thesis of this approach is that the electroencephalogram (EEG) could emerge as the fluctuations in the number of firing neurons. In this framework, EEG is understood as a statistical epiphenomenon. In this paper, the mean number of active sites and the self-correlation function both in the SIS stochastic model and in elementary cellular automata (ECAs) are considered. Damped oscillatory relaxation to the stationary state is found both in the SIS model and in ECA rule 30; periodic oscillations are found for other class 3 and class 4 cellular automata. A statistical analysis of the selfcorrelations in real EEG shows that the damped oscillatory relaxations are found both in delta and alpha waves. The normalized amplitude of these correlations is predicted by cellular automata models. This reinforces the view of the brain as a highly complex cellular automata system. es_ES
dc.language Inglés es_ES
dc.publisher Complex Systems Publications, Inc. es_ES
dc.relation.ispartof Complex Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Self-Correlations of Electroencephalograms es_ES
dc.type Artículo es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Acedo Rodríguez, L.; Aranda Lozano, DF. (2012). Self-Correlations of Electroencephalograms. Complex Systems. 20(4):289-303. http://hdl.handle.net/10251/67069 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.complex-systems.com/abstracts/v20_i04_a01.html es_ES
dc.description.upvformatpinicio 289 es_ES
dc.description.upvformatpfin 303 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 232371 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem