Mostrar el registro sencillo del ítem
dc.contributor.author | Esparza Peidro, Alicia | es_ES |
dc.contributor.author | Sala, Antonio | es_ES |
dc.contributor.author | Albertos Pérez, Pedro | es_ES |
dc.date.accessioned | 2016-07-06T07:40:39Z | |
dc.date.available | 2016-07-06T07:40:39Z | |
dc.date.issued | 2011-09 | |
dc.identifier.issn | 0952-1976 | |
dc.identifier.uri | http://hdl.handle.net/10251/67195 | |
dc.description.abstract | This paper discusses the application of the virtual reference tuning (VRT) techniques to tune neural controllers from batch inputoutput data, by particularising nonlinear VRT and suitably computing gradients backpropagating in time. The flexibility of gradient computation with neural networks also allows alternative block diagrams with extra inputs to be considered. The neural approach to VRT in a closed-loop setup is compared to the linear VRFT one in a simulated crane example. © 2011 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | A. Esparza is grateful to the project GVPRE/2008/116 financed by Generalitat Valenciana. The authors are also grateful to the financial support of Grants dpi2008-06731-c02-01, dpi2011-27845-c02-01 (Spanish Government) and prometeo/2008/088 (Generalitat Valenciana). | en_EN |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Back propagation through time | es_ES |
dc.subject | Data-based controller tuning | es_ES |
dc.subject | Direct controller design | es_ES |
dc.subject | Model reference control | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Virtual reference feedback tuning | es_ES |
dc.subject | Back-propagation through time | es_ES |
dc.subject | Controllers | es_ES |
dc.subject | Feedback | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Neural networks in virtual reference tuning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engappai.2011.04.003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GVPRE%2F2008%2F116/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-27845-C02-01/ES/ESTIMACION, OPTIMIZACION Y CONTROL MULTIVARIABLE EN SISTEMAS MULTI-MODELO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06731-C02-01/ES/IDENTIFICACION Y CONTROL DE SISTEMAS NO LINEALES Y LTV MEDIANTE MULTI-MODELOS TAKAGI-SUGENO Y POLINOMIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Esparza Peidro, A.; Sala, A.; Albertos Pérez, P. (2011). Neural networks in virtual reference tuning. Engineering Applications of Artificial Intelligence. 24(6):983-995. https://doi.org/10.1016/j.engappai.2011.04.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.engappai.2011.04.003 | es_ES |
dc.description.upvformatpinicio | 983 | es_ES |
dc.description.upvformatpfin | 995 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 41399 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |