- -

Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Sabater Picot, Mª José es_ES
dc.contributor.author Navas Escrig, Javier es_ES
dc.contributor.author Yacaman, Miguel José es_ES
dc.contributor.author Larios, Eduardo es_ES
dc.contributor.author Posadas, Álvaro es_ES
dc.contributor.author López Quintela, M. Arturo es_ES
dc.contributor.author Buceta, David es_ES
dc.contributor.author Mendoza, Ernest es_ES
dc.contributor.author Guilera, Gemma es_ES
dc.contributor.author Mayoral, Álvaro es_ES
dc.date.accessioned 2016-07-06T11:52:24Z
dc.date.available 2016-07-06T11:52:24Z
dc.date.issued 2013-09
dc.identifier.issn 1755-4330
dc.identifier.uri http://hdl.handle.net/10251/67246
dc.description.abstract [EN] The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O-2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O-2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts. es_ES
dc.description.sponsorship Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267, MAT2011-28009 and MAT2010-20442 projects) and Xunta de Galicia (Grupos Ref.Comp.2010/41) is acknowledged. M.J.Y. and E. L. acknowledge the support of the National Centre for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health and of the National Science Foundation for support with grants DMR-1103730 and PREM: NSF PREM Grant # DMR 0934218. We also acknowledge the support of Consejo Nacional De Ciencia y Tecnologia. J.N. expresses his gratitude to Consejo Superior de Investigaciones Cientificas for a JAE Fellowship. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gold es_ES
dc.subject Gold, clusters, atomicity, oxidation, disulfides es_ES
dc.subject Clusters es_ES
dc.subject Atomicity es_ES
dc.subject Oxidation es_ES
dc.subject Disulfides es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/NCHEM.1721
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//5G12RR013646-12/US/CORE 1- BIOPHOTONICS CORE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIMHD//G12MD007591/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1103730/US/Alloys at the Nanoscale; The Case of Nanoparticles Second Phase/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0934218/US/Oxide and Metal Nanoparticles-The Interface between Life Sciences and Physical Sciences/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28009/ES/CATALIZADORES MONO- Y MULTIFUNCIONALES BASADOS EN NANOPARTICULAS METALICAS DIRIGIDOS A TRANSFORMACIONES SECUENCIALES O REACCIONES EN CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-20442/ES/PROPIEDADES CATALITICAS DE CLUSTERES ATOMICOS DE ELEMENTOS METALICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//Comp.2010%2F41/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Corma Canós, A.; Concepción Heydorn, P.; Boronat Zaragoza, M.; Sabater Picot, MJ.; Navas Escrig, J.; Yacaman, MJ.; Larios, E.... (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry. 5(9):775-781. https://doi.org/10.1038/NCHEM.1721 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1038/nchem.1721 es_ES
dc.description.upvformatpinicio 775 es_ES
dc.description.upvformatpfin 781 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 254813 es_ES
dc.contributor.funder National Institute on Minority Health and Health Disparities es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Institutes of Health es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005). es_ES
dc.description.references Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45 7896–7936 (2006). es_ES
dc.description.references Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008). es_ES
dc.description.references Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997). es_ES
dc.description.references López, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004). es_ES
dc.description.references Hutchings, G. J. Catalysis by gold. Catal. Today 100, 55–61 (2005). es_ES
dc.description.references Chen, M. S. & Goodman, D. W. Catalytically active gold: from nanoparticles to ultrathin films. Acc. Chem. Res. 39, 739–746 (2006). es_ES
dc.description.references Risse, Th., Shaikhutdinov, Sh., Nilius, N., Sterrer, M. & Freund, H. J. Gold supported on thin oxide films: from single atoms to nanoparticles. Acc. Chem. Res. 41, 949–956 (2008). es_ES
dc.description.references Liu, Y., Tsunoyama, H., Akita, T., Xie, S. & Tsukuda, T. Aerobic oxidation of cyclohexane catalysed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal. 1, 2–6 (2011). es_ES
dc.description.references Huang, J. et al. Propene epoxidation with O2 and H2: identification of the most active gold clusters. J. Catal. 278, 8–15 (2011). es_ES
dc.description.references Haruta, M. et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4 . J. Catal. 144, 175–192 (1993). es_ES
dc.description.references Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009). es_ES
dc.description.references Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1332 (2008). es_ES
dc.description.references Lupini A. R., Veith, G. M., Dudney, J. & Pennycook, S. J. Understanding catalyst stability through aberration-corrected STEM. Microsc Microanal. 15, 1408–1409 (2009). es_ES
dc.description.references Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 58, 199–212 (2009). es_ES
dc.description.references Uzun, A., Ortalan, V., Hao, Y., Browning, N. D. & Gates, B. C. Imaging gold atoms in site-isolated MgO-supported mononuclear gold complexes. J. Phys. Chem. C 113, 16847–16849 (2009). es_ES
dc.description.references Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. 51, 5842–5846 (2012). es_ES
dc.description.references Yoon, B., Häkkinen, H. & Landman, U. Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A 107, 4066–4071 (2003). es_ES
dc.description.references Lang, S. M., Bernhardt, T. M., Barnett, R. N., Yoon, B. & Landman, U. Hydrogen-promoted oxygen activation by free gold cluster cations. J. Am. Chem. Soc. 131, 8939–8951 (2009). es_ES
dc.description.references Hagen, J. et al. Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: model complexes for catalytic CO oxidation. Phys. Chem. Chem. Phys. 4, 1707–1709 (2002). es_ES
dc.description.references Molina, L. M., Lesarri, A. & Alonso, J. A. New insights on the reaction mechanism for CO oxidation on Au catalysts. Chem. Phys. Lett. 468, 201–204 (2009). es_ES
dc.description.references Joshi, A. M., Delgass, W. N. & Thomson, K. T. Comparison of the catalytic activity of Au3, Au4+, Au5 and Au5− in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation. J. Phys. Chem. B 109, 22392–22406 (2005). es_ES
dc.description.references Lee, S. et al. Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48, 1467–1471 (2009). es_ES
dc.description.references Guzman, J. & Gates, B. C. Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide. Angew. Chem. Int. Ed. 42, 690–693 (2003). es_ES
dc.description.references Robinson, P. S. D., Khairallah, G. N., da Silva, G., Lioe, H. & O'Hair, R. A. J. Gold-mediated C–I bond activation of iodobenzene. Angew. Chem. Int. Ed. 51, 3812–3817 (2012). es_ES
dc.description.references Jia, C. J. & Schüth, F. Colloidal metal nanoparticles as a component of designed catalyst. Phys. Chem. Chem. Phys. 13, 2457–2487 (2011). es_ES
dc.description.references Tran, M. L., Zvyagin, A. V. & Plakhotnik, T. Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem. Commun. 2400–2401 (2006). es_ES
dc.description.references Ledo-Suárez, A. et al. Facile synthesis of stable subnanosized silver clusters in microemulsions. Angew. Chem. Int. Ed. 46, 8823–8827 (2007). es_ES
dc.description.references Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008). es_ES
dc.description.references Liu, Y. M., Tsunoyama, H., Akita, T. & Tsukuda, T. Chem. Commun. 46, 550–552 (2010). es_ES
dc.description.references Shichibu, Y. & Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to ‘magic-number’ Au13 clusters. Small 6, 1216–1220 (2010). es_ES
dc.description.references Xie, S., Tsunoyama, H., Kurashige, W., Negishi, Y. & Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2, 1519–1523 (2012). es_ES
dc.description.references Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999). es_ES
dc.description.references Hoober, K. L. & Thorpe, C. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation. Biochemistry 38, 3211–3217 (1999). es_ES
dc.description.references Jaje, J. et al. A flavin-dependent sulfhydryl oxidase in bovine milk. Biochemistry 46, 13031–13040 (2007). es_ES
dc.description.references Dumont, E., Michel, C. & Sautet, P. Unraveling gold(I)-specific action towards peptidic disulfide cleavage: a DFT investigation. ChemPhysChem 12, 2596–2603 (2011). es_ES
dc.description.references Barton, D. G. & Podkolzin, S. G. Kinetic study of a direct water synthesis over silica-supported gold nanoparticles. J. Phys. Chem. B 109, 2262–2274 (2005). es_ES
dc.description.references Ntainjua, E. N. et al. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chem. 10, 1162–1169 (2008). es_ES
dc.description.references Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007). es_ES
dc.description.references Häkkinen, H. The gold–sulfur interface at the nanoscale. Nature Chem. 4, 443–455 (2012). es_ES
dc.description.references Alves, L. et al. Synthesis and stabilization of subnanometric gold oxide nanoparticles on multiwalled carbon nanotubes and their catalytic activity. J. Am. Chem. Soc. 133, 10251–10261 (2011). es_ES
dc.description.references Santiago-González, B. et al. One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett. 10, 4217–4221 (2010). es_ES
dc.description.references Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). es_ES
dc.description.references Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). es_ES
dc.description.references Frisch, M. J. et al. Gaussian 03, Revision B.04 (Gaussian, 2003). es_ES
dc.description.references McLean A. D. & Chandler G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72 5639–5648 (1980). es_ES
dc.description.references Krishnan, R., Binkley, J. S., Seeger, R. &. Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72 650–654 (1980). es_ES
dc.description.references Hay P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985). es_ES
dc.description.references Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–747 (1985). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem