- -

Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Domínguez, Elisa es_ES
dc.contributor.author Rossi, Vittorio es_ES
dc.contributor.author Michereff, Sami Jorge es_ES
dc.contributor.author García Jiménez, José es_ES
dc.contributor.author Armengol Fortí, Josep es_ES
dc.date.accessioned 2016-07-07T12:53:36Z
dc.date.available 2016-07-07T12:53:36Z
dc.date.issued 2014-08
dc.identifier.issn 0929-1873
dc.identifier.uri http://hdl.handle.net/10251/67313
dc.description.abstract [EN] Dispersal of conidia of Fusicladium eriobotryae, the causal agent of loquat scab, was investigated in two loquat orchards in Spain from 2010 to 2012. A volumetric spore sampler, horizontally and vertically orientated microscope slides, and rain collectors were placed in loquat fields to trap conidia of F. eriobotryae. No conidia were collected in the volumetric sampler, and highly variable numbers of conidia were collected in the rain gatherers. Large numbers of conidia were collected by microscope slides, particularly by those held in a horizontal orientation compared with those held in a vertical orientation. Approximately 90 % of the F. eriobotryae conidia were collected during rainy periods. Based on ROC and Bayesian analysis, using a parts per thousand yen 0.2 mm rainfall as a cut-off value resulted in a high probability of correctly predicting actual conidial dispersal, and had a low probability of failing to predict actual conidial dispersal. Based on the index of dispersion and the binary power law, the incidence of loquat scab on fruit was highly aggregated in space between and within trees, and aggregation was influenced by disease incidence. Our results demonstrate, for the first time, that F. eriobotryae is dispersed mainly in rain splash. The results will be integrated into a mechanistic, weather-driven, disease prediction model that should help growers to minimize fungicide application for the management of loquat scab. es_ES
dc.description.sponsorship This work was funded by the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). Financial support by the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12) de la Universidad Politecnica de Valencia for E. Gonzalez-Dominguez during her 3-month stay at the Universita Cattolica del Sacro Cuore (Piacenza, Italy) is gratefully acknowledged. We would like to thank E. Soler, A. Perez and J.J. Giner for their technical assistance. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof European Journal of Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Eriobotrya japonica es_ES
dc.subject Plant disease epidemiology es_ES
dc.subject Rain splash es_ES
dc.subject Spore traps es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10658-014-0439-0
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-12/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation González Domínguez, E.; Rossi, V.; Michereff, SJ.; García Jiménez, J.; Armengol Fortí, J. (2014). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology. 139(4):849-861. https://doi.org/10.1007/s10658-014-0439-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s10658-014-0439-0 es_ES
dc.description.upvformatpinicio 849 es_ES
dc.description.upvformatpfin 861 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 268001 es_ES
dc.identifier.eissn 1573-8469
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Cooperativa Agrícola de Callosa d'en Sarrià es_ES
dc.description.references Amponsah, N. T., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2009). Rainwater dispersal of botryosphaeria conidia from infected grapevines. New Zealand Plant Protection, 62, 228–233. es_ES
dc.description.references Bock, C. H., Cottrell, T. E., Hotchkiss, M. W., Wood, B. W., & Road, D. (2013). Vertical distribution of scab in large pecan trees. Plant Disease, 97, 626–634. es_ES
dc.description.references Bock, C. H., Hotchkiss, M. W., Okie, W. R., & Wood, B. W. (2011). The distribution of peach scab lesions on the surface of diseased peaches. European Journal of Plant Pathology, 130, 393–402. es_ES
dc.description.references Caffi, T., Gilardi, G., Monchiero, M., & Rossi, V. (2013). Production and release of asexual sporangia in Plasmopara viticola. Phytopathology, 103, 64–73. es_ES
dc.description.references Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley. 532 pp. es_ES
dc.description.references Carisse, O., Meloche, C., Boivin, G., & Jobin, T. (2009). Action thresholds for summer fungicide sprays and sequential classification of apple scab incidence. Plant Disease, 93, 490–498. es_ES
dc.description.references Carisse, O., Meloche, C., & Turechek, W. W. (2011). Spatial heterogeneity, incidence-incidence and incidence-lesion density relationship of apple scab (Venturia inaequalis) in managed orchards. European Journal of Plant Pathology, 130, 349–365. es_ES
dc.description.references Carisse, O., Rolland, D., Talbot, B., & Savary, S. (2006). Heterogeneity of the aerial concentration and deposition of ascospores of Venturia inaequalis within a tree canopy during the rain. European Journal of Plant Pathology, 117, 13–24. es_ES
dc.description.references Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270. es_ES
dc.description.references Frey, C. N., & Keitt, G. W. (1925). Studies of spore dissemination of Venturia inaequalis (Cke.) Wint. in relation to seasonal development of apple scab. Journal of Agricultural Research, 30, 529–540. es_ES
dc.description.references Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47, 511–521. es_ES
dc.description.references González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338. es_ES
dc.description.references Gottwald, T. R. (1983). Factors affecting spore liberation by Cladosporium carpophilum. Phytopathology, 73, 1500–1505. es_ES
dc.description.references Gottwald, T. R. (1985). Influence of temperature, leaf wetness period, leaf age, and spore concentration on infection of pecan leaves by conidia of Cladosporium caryigenum. Phytopathology, 75, 190–194. es_ES
dc.description.references Gottwald, T. R., & Bertrand, P. F. (1982). Patterns of diurnal and seasonal airborne spore concentrations of Fusicladium effusum and its impact on a pecan scab epidemic. Phytopathology, 72, 330–335. es_ES
dc.description.references GVA, (2012). Butlletí d’Avisos – Diciembre núm. 12/2012. Generalitat Valenciana, Conselleria d’Agricultura, Pesca i Alimentaciò es_ES
dc.description.references Hanley, J. A. (2005). Receiver operating characteristic (ROC) curves (Encyclopedia of Biostatistics 2nd ed.). New York: Wiley. es_ES
dc.description.references Hartman, J. R., Parisi, L., & Bautrais, P. (1999). Effect of leaf wetness duration, temperature, and conidial inoculum dose on apple scab infections. Plant Disease, 83, 531–534. es_ES
dc.description.references Hirst, J. M., & Stedman, J. (1961). The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.). Annals of Applied Biology, 49, 290–305. es_ES
dc.description.references Jackson, S. L., & Bayliss, K. L. (2011). Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathology, 60, 801–810. es_ES
dc.description.references Kiely, T. B. (1948). Preliminary studies on Guignardia citricarpa: the ascigerous stage of Phoma citricarpa and its relation to black spot of citrus. Proceedings of the Linnean Society of New South Wales, 73, 249–292. es_ES
dc.description.references Kotzé, J. M. (1981). Epidemiology and control of citrus black spot in South Africa. Plant Disease, 65, 945–950. es_ES
dc.description.references Lan, Z., & Scherm, H. (2003). Moisture sources in relation to conidial dissemination and infection by Cladosporium carpophilum within peach canopies. Phytopathology, 93, 1581–1586. es_ES
dc.description.references Latham, A. J. (1982). Effect of some weather factors and Fusicladium effusum conidium dispersal on pecan scab occurrence. Phytopathology, 72, 1339–1345. es_ES
dc.description.references Lops, F., Frisullo, S., & Rossi, V. (1993). Studies on the spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin, 23, 385–387. es_ES
dc.description.references MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology, and Management. St. Paul: American Phytopathological Society. es_ES
dc.description.references Madden, L. V. (1992). Rainfall and the dispersal of fungal spores. Advances in Plant Pathology, 8, 39–79. es_ES
dc.description.references Madden, L. V. (2006). Botanical epidemiology: some key advances and its continuing role in disease management. European Journal of Plant Pathology, 115, 3–23. es_ES
dc.description.references Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The study of plant disease epidemics (p. 421). St. Paul: APS Press. es_ES
dc.description.references Meredith, D. S. (1973). Significance of spore release and dispersal mechanisms in plant disease epidemiology. Annual Review of Phytopathology, 11, 313–342. es_ES
dc.description.references Mills, W. D., & Laplante, A. A. (1951). Diseases and insects in the orchard. Cornell Extension Bulletin, 711. es_ES
dc.description.references Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2008). Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology, 120, 211–222. es_ES
dc.description.references Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2010). Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology, 60, 190–199. es_ES
dc.description.references Ooka, J. J., & Kommnedahl, T. (1977). Wind and rain dispersal of Fusarium moniliforme in corn fields. Phytopathology, 67, 1023–1026. es_ES
dc.description.references Owaga, J.M. & English, H. (1991). Diseases of temperate zone. Tree fruit and nut crops. University of California. 461 pp. es_ES
dc.description.references Raabe, R., & Gardner, M. W. (1972). Scab of pyracantha, loquat, Toyon and Kageneckia. Phytopathology, 62, 914–916. es_ES
dc.description.references Salerno, M., Somma, V., & Rosciglione, B. (1971). Ricerche sull’epidemiologia della ticchiolatura del nespolo del giappone. Technology Agriculture, 23, 947–956. es_ES
dc.description.references Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007). Identification and characterization of Fusicladium eriobotryae: fungal pathogen causing mediterranean loquat scab. Acta Horticulturae, 750, 343–347. es_ES
dc.description.references Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157. es_ES
dc.description.references Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production potential of Fusicladium carpophilum on twig lesions in southeastern peach orchards. Plant Disease, 92, 47–50. es_ES
dc.description.references Schubert, K. S., Ritschel, A. R. & Braun, U. B. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132. es_ES
dc.description.references Spósito, M. B., Amorim, L., Bassanezi, R. B., Filho, A. B., & Hau, B. (2008). Spatial pattern of black spot incidence within citrus trees related to disease severity and pathogen dispersal. Plant Pathology, 57, 103–108. es_ES
dc.description.references Sutton, T. B., Jones, A. L., & Nelson, L. A. (1976). Factors affecting dispersal of conidia of the apple scab fungus. Phytopathology, 66, 1313–1317. es_ES
dc.description.references Turechek, W. W., & Wilcox, W. F. (2005). Evaluating predictors of apple scab with receiver operating characteristic curve analysis. Phytopathology, 95, 679–691. es_ES
dc.description.references Umemoto, S. (1990). Relationship between leaf wetness period, temperature and infection of Venturia nashicola to Japanese pear leaves. Annals of the Phytopathological Society of Japan, 57, 212–218. es_ES
dc.description.references Viruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleagina in olive groves of southern Spain : survival, inoculum production, and dispersal. Plant Disease, 97, 1–33. es_ES
dc.description.references Viruega, J. R., Roca, L. F., Moral, J., & Trapero, A. (2011). Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Disease, 95, 1139–1146. es_ES
dc.description.references Waggoner, P. E., & Rich, S. (1981). Lesion distribution, multiple infection, and the logistic increase of plant disease. Proceedings of the National Academy of Sciences of USA, 78, 3292–3295. es_ES
dc.description.references Yuen, J. E., & Hughes, G. (2002). Bayesian analysis of plant disease prediction. Plant Pathology, 51, 407–412. es_ES
dc.description.references Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561–577. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem