Mostrar el registro sencillo del ítem
dc.contributor.author | Luz Mínguez, Ignacio | es_ES |
dc.contributor.author | Roesler, Christoph | es_ES |
dc.contributor.author | Epp, Konstantin | es_ES |
dc.contributor.author | Llabrés i Xamena, Francesc Xavier | es_ES |
dc.contributor.author | Fischer, Roland A. | es_ES |
dc.date.accessioned | 2016-07-08T12:13:16Z | |
dc.date.available | 2016-07-08T12:13:16Z | |
dc.date.issued | 2015-08 | |
dc.identifier.issn | 1434-1948 | |
dc.identifier.uri | http://hdl.handle.net/10251/67383 | |
dc.description.abstract | [EN] Host-guest inclusion properties of UiO-66 and UiO-67 metal-organic frameworks have been studied using ferrocene (FeCp2) as probe molecule. According to variable-temperature solid-state H-1 and C-13 CP-MAS-NMR, two different environments exist for adsorbed FeCp2 inside UiO-66 and UiO-67, which have been assigned to octahedral and tetrahedral cavities. At room temperature, a rapid exchange between these two adsorption sites occurs in UiO-67, while at -80 degrees C the intracrystalline traffic of FeCp2 through the triangular windows is largely hindered. In UiO-66, FeCp2 diffusion is already impeded at room temperature, in agreement with the smaller pore windows. Palladium nanoparticles (Pd NPs) encapsulated inside UiO-66 and UiO-67 have been prepared by chemical vapor infiltration of (allyl)Pd(Cp) followed by UV light irradiation. Infiltration must be carried out at low temperature (-10 degrees C) to avoid uncontrolled decomposition of the organometallic precursor and formation of Pd NPs at the external surface of the MOF. The resulting Pd-MOFs are shape selective catalysts, as shown for the hydrogenation of carbonyl compounds with different steric hindrance. | es_ES |
dc.description.sponsorship | Financial support from the Consolider-Ingenio 2010 (project MULTICAT), the Severo Ochoa program, and the Spanish Ministry of Science and Innovation (project MAT2011-29020-C02-01) is gratefully acknowledged. C. R. is grateful for a graduate student fellowship awarded by the Cluster of Excellence RESOLV (EXC 1069) funded by the German Deutsche Forschungsgemeinschaft (DFG). This project has further received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skolodowska-Curie grant agreement, number 641887. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | European Journal of Inorganic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metal-organic frameworks | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Hydrogenation | es_ES |
dc.subject | Palladium | es_ES |
dc.subject | Chemical vapor infiltration | es_ES |
dc.title | Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/ejic.201500299 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641887/EU/DEFect NETwork materials science and engineering/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//EXC 1069/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Luz Mínguez, I.; Roesler, C.; Epp, K.; Llabrés I Xamena, FX.; Fischer, RA. (2015). Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts. European Journal of Inorganic Chemistry. 23:3904-3912. https://doi.org/10.1002/ejic.201500299 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/ejic.201500299 | es_ES |
dc.description.upvformatpinicio | 3904 | es_ES |
dc.description.upvformatpfin | 3912 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.relation.senia | 293454 | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k | es_ES |
dc.description.references | Llabres i Xamena, F., & Gascon, J. (Eds.). (2013). Metal Organic Frameworks as Heterogeneous Catalysts. Catalysis Series. doi:10.1039/9781849737586 | es_ES |
dc.description.references | Li, B., Wang, H., & Chen, B. (2014). Microporous Metal-Organic Frameworks for Gas Separation. Chemistry - An Asian Journal, 9(6), 1474-1498. doi:10.1002/asia.201400031 | es_ES |
dc.description.references | Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j | es_ES |
dc.description.references | Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t | es_ES |
dc.description.references | Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c | es_ES |
dc.description.references | Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515 | es_ES |
dc.description.references | Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473 | es_ES |
dc.description.references | Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u | es_ES |
dc.description.references | Rösler, C., Esken, D., Wiktor, C., Kobayashi, H., Yamamoto, T., Matsumura, S., … Fischer, R. A. (2014). Encapsulation of Bimetallic Nanoparticles into a Metal-Organic Framework: Preparation and Microstructure Characterization of Pd/Au@ZIF-8. European Journal of Inorganic Chemistry, 2014(32), 5514-5521. doi:10.1002/ejic.201402409 | es_ES |
dc.description.references | Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h | es_ES |
dc.description.references | Müller, M., Zhang, X., Wang, Y., & Fischer, R. A. (2009). Nanometer-sized titania hosted inside MOF-5. Chem. Commun., (1), 119-121. doi:10.1039/b814241f | es_ES |
dc.description.references | Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h | es_ES |
dc.description.references | Hermannsdörfer, J., Friedrich, M., Miyajima, N., Albuquerque, R. Q., Kümmel, S., & Kempe, R. (2012). Ni/Pd@MIL-101: Synergistic Catalysis with Cavity-Conform Ni/Pd Nanoparticles. Angewandte Chemie International Edition, 51(46), 11473-11477. doi:10.1002/anie.201205078 | es_ES |
dc.description.references | Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g | es_ES |
dc.description.references | Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878 | es_ES |
dc.description.references | Guo, Z., Xiao, C., Maligal-Ganesh, R. V., Zhou, L., Goh, T. W., Li, X., … Huang, W. (2014). Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 4(5), 1340-1348. doi:10.1021/cs400982n | es_ES |
dc.description.references | Li, X., Guo, Z., Xiao, C., Goh, T. W., Tesfagaber, D., & Huang, W. (2014). Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 4(10), 3490-3497. doi:10.1021/cs5006635 | es_ES |
dc.description.references | Zhang, W., Lu, G., Cui, C., Liu, Y., Li, S., Yan, W., … Huo, F. (2014). A Family of Metal-Organic Frameworks Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal Nanoparticles. Advanced Materials, 26(24), 4056-4060. doi:10.1002/adma.201400620 | es_ES |
dc.description.references | Chen, L., Chen, H., Luque, R., & Li, Y. (2014). Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem. Sci., 5(10), 3708-3714. doi:10.1039/c4sc01847h | es_ES |
dc.description.references | Ramsahye, N. A., Gao, J., Jobic, H., Llewellyn, P. L., Yang, Q., Wiersum, A. D., … Maurin, G. (2014). Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. The Journal of Physical Chemistry C, 118(47), 27470-27482. doi:10.1021/jp509672c | es_ES |
dc.description.references | Catal. Today 2014 | es_ES |
dc.description.references | Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047 | es_ES |
dc.description.references | Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d | es_ES |
dc.description.references | Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u | es_ES |
dc.description.references | Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565 | es_ES |
dc.description.references | McClellan, W. R., Hoehn, H. H., Cripps, H. N., Muetterties, E. L., & Howk, B. W. (1961). π-Allyl Derivatives of Transition Metals. Journal of the American Chemical Society, 83(7), 1601-1607. doi:10.1021/ja01468a013 | es_ES |
dc.description.references | Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., & Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 17(24), 6643-6651. doi:10.1002/chem.201003211 | es_ES |