- -

Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luz Mínguez, Ignacio es_ES
dc.contributor.author Roesler, Christoph es_ES
dc.contributor.author Epp, Konstantin es_ES
dc.contributor.author Llabrés i Xamena, Francesc Xavier es_ES
dc.contributor.author Fischer, Roland A. es_ES
dc.date.accessioned 2016-07-08T12:13:16Z
dc.date.available 2016-07-08T12:13:16Z
dc.date.issued 2015-08
dc.identifier.issn 1434-1948
dc.identifier.uri http://hdl.handle.net/10251/67383
dc.description.abstract [EN] Host-guest inclusion properties of UiO-66 and UiO-67 metal-organic frameworks have been studied using ferrocene (FeCp2) as probe molecule. According to variable-temperature solid-state H-1 and C-13 CP-MAS-NMR, two different environments exist for adsorbed FeCp2 inside UiO-66 and UiO-67, which have been assigned to octahedral and tetrahedral cavities. At room temperature, a rapid exchange between these two adsorption sites occurs in UiO-67, while at -80 degrees C the intracrystalline traffic of FeCp2 through the triangular windows is largely hindered. In UiO-66, FeCp2 diffusion is already impeded at room temperature, in agreement with the smaller pore windows. Palladium nanoparticles (Pd NPs) encapsulated inside UiO-66 and UiO-67 have been prepared by chemical vapor infiltration of (allyl)Pd(Cp) followed by UV light irradiation. Infiltration must be carried out at low temperature (-10 degrees C) to avoid uncontrolled decomposition of the organometallic precursor and formation of Pd NPs at the external surface of the MOF. The resulting Pd-MOFs are shape selective catalysts, as shown for the hydrogenation of carbonyl compounds with different steric hindrance. es_ES
dc.description.sponsorship Financial support from the Consolider-Ingenio 2010 (project MULTICAT), the Severo Ochoa program, and the Spanish Ministry of Science and Innovation (project MAT2011-29020-C02-01) is gratefully acknowledged. C. R. is grateful for a graduate student fellowship awarded by the Cluster of Excellence RESOLV (EXC 1069) funded by the German Deutsche Forschungsgemeinschaft (DFG). This project has further received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skolodowska-Curie grant agreement, number 641887. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Nanoparticles es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Hydrogenation es_ES
dc.subject Palladium es_ES
dc.subject Chemical vapor infiltration es_ES
dc.title Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201500299
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641887/EU/DEFect NETwork materials science and engineering/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//EXC 1069/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Luz Mínguez, I.; Roesler, C.; Epp, K.; Llabrés I Xamena, FX.; Fischer, RA. (2015). Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts. European Journal of Inorganic Chemistry. 23:3904-3912. https://doi.org/10.1002/ejic.201500299 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ejic.201500299 es_ES
dc.description.upvformatpinicio 3904 es_ES
dc.description.upvformatpfin 3912 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.relation.senia 293454 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Deutsche Forschungsgemeinschaft
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Llabres i Xamena, F., & Gascon, J. (Eds.). (2013). Metal Organic Frameworks as Heterogeneous Catalysts. Catalysis Series. doi:10.1039/9781849737586 es_ES
dc.description.references Li, B., Wang, H., & Chen, B. (2014). Microporous Metal-Organic Frameworks for Gas Separation. Chemistry - An Asian Journal, 9(6), 1474-1498. doi:10.1002/asia.201400031 es_ES
dc.description.references Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j es_ES
dc.description.references Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t es_ES
dc.description.references Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c es_ES
dc.description.references Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515 es_ES
dc.description.references Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473 es_ES
dc.description.references Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u es_ES
dc.description.references Rösler, C., Esken, D., Wiktor, C., Kobayashi, H., Yamamoto, T., Matsumura, S., … Fischer, R. A. (2014). Encapsulation of Bimetallic Nanoparticles into a Metal-Organic Framework: Preparation and Microstructure Characterization of Pd/Au@ZIF-8. European Journal of Inorganic Chemistry, 2014(32), 5514-5521. doi:10.1002/ejic.201402409 es_ES
dc.description.references Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h es_ES
dc.description.references Müller, M., Zhang, X., Wang, Y., & Fischer, R. A. (2009). Nanometer-sized titania hosted inside MOF-5. Chem. Commun., (1), 119-121. doi:10.1039/b814241f es_ES
dc.description.references Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h es_ES
dc.description.references Hermannsdörfer, J., Friedrich, M., Miyajima, N., Albuquerque, R. Q., Kümmel, S., & Kempe, R. (2012). Ni/Pd@MIL-101: Synergistic Catalysis with Cavity-Conform Ni/Pd Nanoparticles. Angewandte Chemie International Edition, 51(46), 11473-11477. doi:10.1002/anie.201205078 es_ES
dc.description.references Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g es_ES
dc.description.references Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878 es_ES
dc.description.references Guo, Z., Xiao, C., Maligal-Ganesh, R. V., Zhou, L., Goh, T. W., Li, X., … Huang, W. (2014). Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 4(5), 1340-1348. doi:10.1021/cs400982n es_ES
dc.description.references Li, X., Guo, Z., Xiao, C., Goh, T. W., Tesfagaber, D., & Huang, W. (2014). Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 4(10), 3490-3497. doi:10.1021/cs5006635 es_ES
dc.description.references Zhang, W., Lu, G., Cui, C., Liu, Y., Li, S., Yan, W., … Huo, F. (2014). A Family of Metal-Organic Frameworks Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal Nanoparticles. Advanced Materials, 26(24), 4056-4060. doi:10.1002/adma.201400620 es_ES
dc.description.references Chen, L., Chen, H., Luque, R., & Li, Y. (2014). Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem. Sci., 5(10), 3708-3714. doi:10.1039/c4sc01847h es_ES
dc.description.references Ramsahye, N. A., Gao, J., Jobic, H., Llewellyn, P. L., Yang, Q., Wiersum, A. D., … Maurin, G. (2014). Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. The Journal of Physical Chemistry C, 118(47), 27470-27482. doi:10.1021/jp509672c es_ES
dc.description.references Catal. Today 2014 es_ES
dc.description.references Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047 es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565 es_ES
dc.description.references McClellan, W. R., Hoehn, H. H., Cripps, H. N., Muetterties, E. L., & Howk, B. W. (1961). π-Allyl Derivatives of Transition Metals. Journal of the American Chemical Society, 83(7), 1601-1607. doi:10.1021/ja01468a013 es_ES
dc.description.references Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., & Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 17(24), 6643-6651. doi:10.1002/chem.201003211 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem