Mostrar el registro sencillo del ítem
dc.contributor.author | Marti, A. | es_ES |
dc.contributor.author | Costero Nieto, Ana María | es_ES |
dc.contributor.author | Gaviña, P. | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.date.accessioned | 2016-07-11T09:05:29Z | |
dc.date.issued | 2015-09-22 | |
dc.identifier.issn | 1434-193X | |
dc.identifier.uri | http://hdl.handle.net/10251/67401 | |
dc.description.abstract | A thiourea-modified fluorescein derivative was synthesized by reaction of fluorescein isothiocyanate with 2-(2-aminoethoxy)ethan-1-ol. UV/Vis absorption and fluorescence emission spectroscopy studies demonstrated that this heteroditopic receptor was able to discriminate among linear aliphatic ω-amino acids with different chain lengths. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Government (fellowship to A. M.) and the Fondos Europeos para el Desarrollo Regional (FEDER) (MAT2012-38429-C04-02) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | European Journal of Organic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Supramolecular chemistry | es_ES |
dc.subject | Sensors | es_ES |
dc.subject | Fluorescence | es_ES |
dc.subject | Amino acids | es_ES |
dc.subject | Thioureas | es_ES |
dc.title | A Simple System Based on a Thiourea-Modified Fluorescein for w-Amino Acid Discrimination | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/ejoc.201500991 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Marti, A.; Costero Nieto, AM.; Gaviña, P.; Parra Álvarez, M. (2015). A Simple System Based on a Thiourea-Modified Fluorescein for w-Amino Acid Discrimination. European Journal of Organic Chemistry. 2015(30):6597-6601. https://doi.org/10.1002/ejoc.201500991 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/ejoc.201500991 | es_ES |
dc.description.upvformatpinicio | 6597 | es_ES |
dc.description.upvformatpfin | 6601 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2015 | es_ES |
dc.description.issue | 30 | es_ES |
dc.relation.senia | 313907 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kim, S. K., & Sessler, J. L. (2010). Ion pair receptors. Chemical Society Reviews, 39(10), 3784. doi:10.1039/c002694h | es_ES |
dc.description.references | Urbach, A. R., & Ramalingam, V. (2011). Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[n]uril Receptors. Israel Journal of Chemistry, 51(5-6), 664-678. doi:10.1002/ijch.201100035 | es_ES |
dc.description.references | Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chem. Soc. Rev., 41(1), 52-67. doi:10.1039/c1cs15159b | es_ES |
dc.description.references | Mutihac, L., Lee, J. H., Kim, J. S., & Vicens, J. (2011). Recognition of amino acids by functionalized calixarenes. Chemical Society Reviews, 40(5), 2777. doi:10.1039/c0cs00005a | es_ES |
dc.description.references | Galan, A., Andreu, D., Echavarren, A. M., Prados, P., & De Mendoza, J. (1992). A receptor for the enantioselective recognition of phenylalanine and tryptophan under neutral conditions. Journal of the American Chemical Society, 114(4), 1511-1512. doi:10.1021/ja00030a074 | es_ES |
dc.description.references | Buryak, A., & Severin, K. (2005). A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids. Journal of the American Chemical Society, 127(11), 3700-3701. doi:10.1021/ja042363v | es_ES |
dc.description.references | Lou, X., Zhang, L., Qin, J., & Li, Z. (2010). Colorimetric Sensing of α-Amino Acids and Its Application for the «Label-Free» Detection of Protease. Langmuir, 26(3), 1566-1569. doi:10.1021/la904138f | es_ES |
dc.description.references | Zhang, Y.-X., Zhao, P.-Y., & Yu, L.-P. (2013). Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sensors and Actuators B: Chemical, 181, 850-857. doi:10.1016/j.snb.2013.02.079 | es_ES |
dc.description.references | Qian, S., & Lin, H. (2014). A facile approach to cross-reactive colorimetric sensor arrays: an application in the recognition of the 20 natural amino acids. RSC Adv., 4(56), 29581-29585. doi:10.1039/c4ra05004e | es_ES |
dc.description.references | Wang, J., Liu, H.-B., Tong, Z., & Ha, C.-S. (2015). Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coordination Chemistry Reviews, 303, 139-184. doi:10.1016/j.ccr.2015.05.008 | es_ES |
dc.description.references | Dalla Cort, A., De Bernardin, P., & Schiaffino, L. (2009). A new water soluble Zn-salophen derivative as a receptor for α-aminoacids: Unexpected chiral discrimination. Chirality, 21(1), 104-109. doi:10.1002/chir.20614 | es_ES |
dc.description.references | Folmer-Andersen, J. F., Lynch, V. M., & Anslyn, E. V. (2005). «Naked-Eye» Detection of Histidine by Regulation of CuII Coordination Modes. Chemistry - A European Journal, 11(18), 5319-5326. doi:10.1002/chem.200500016 | es_ES |
dc.description.references | Yang, Y.-K., Shim, S., & Tae, J. (2010). Rhodamine–sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water. Chemical Communications, 46(41), 7766. doi:10.1039/c0cc02381g | es_ES |
dc.description.references | Huo, F., Kang, J., Yin, C., Zhang, Y., & Chao, J. (2015). A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sensors and Actuators B: Chemical, 207, 139-143. doi:10.1016/j.snb.2014.10.023 | es_ES |
dc.description.references | De Silva, A. P., Gunaratne, H. Q. N., McVeigh, C., Maguire, G. E. M., Maxwell, P. R. S., & O’Hanlon, E. (1996). Fluorescent signalling of the brain neurotransmitter γ-aminobutyric acid and related amino acid zwitterions. Chem. Commun., (18), 2191-2192. doi:10.1039/cc9960002191 | es_ES |
dc.description.references | Costero, A. M., Rodríguez-Muñiz, G. M., Gil, S., Peransi, S., & Gaviña, P. (2008). Solid–liquid extraction of ω-amino acids using ditopic receptors. Tetrahedron, 64(1), 110-116. doi:10.1016/j.tet.2007.10.066 | es_ES |
dc.description.references | Wang, H., Yu, A., Wiman, B., & Pap, S. (2003). Identification of amino acids in antiplasmin involved in its noncovalent «lysine-binding-site»-dependent interaction with plasmin. European Journal of Biochemistry, 270(9), 2023-2029. doi:10.1046/j.1432-1033.2003.03578.x | es_ES |
dc.description.references | MENHART, N., & CASTELLINO, F. J. (2009). The importance of the hydrophobic components of the binding energies in the interaction of ω-amino acid ligands with isolated kringle polypeptide domains of human plasminogen. International Journal of Peptide and Protein Research, 46(6), 464-470. doi:10.1111/j.1399-3011.1995.tb01601.x | es_ES |
dc.description.references | Fitsanakis, V. A., & Aschner, M. (2005). The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicology and Applied Pharmacology, 204(3), 343-354. doi:10.1016/j.taap.2004.11.013 | es_ES |
dc.description.references | Lakowicz, J. R. (Ed.). (2006). Principles of Fluorescence Spectroscopy. doi:10.1007/978-0-387-46312-4 | es_ES |
dc.description.references | Asthana, S. K., Kumar, A., Neeraj, & Upadhyay, K. K. (2014). A reaction based chromofluorogenic turn-on probe for specific detection of fluoride over sulfide/thiols. Tetrahedron Letters, 55(43), 5988-5992. doi:10.1016/j.tetlet.2014.09.051 | es_ES |
dc.description.references | Zheng, F., Zeng, F., Yu, C., Hou, X., & Wu, S. (2012). A PEGylated Fluorescent Turn-On Sensor for Detecting Fluoride Ions in Totally Aqueous Media and Its Imaging in Live Cells. Chemistry - A European Journal, 19(3), 936-942. doi:10.1002/chem.201202732 | es_ES |
dc.description.references | Yang, X.-F., Wang, L., Xu, H., & Zhao, M. (2009). A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution. Analytica Chimica Acta, 631(1), 91-95. doi:10.1016/j.aca.2008.10.037 | es_ES |
dc.description.references | Wu, J.-S., Kim, H. J., Lee, M. H., Yoon, J. H., Lee, J. H., & Kim, J. S. (2007). Anion-induced ring-opening of fluorescein spirolactam: fluorescent OFF–ON. Tetrahedron Letters, 48(18), 3159-3162. doi:10.1016/j.tetlet.2007.03.060 | es_ES |
dc.description.references | Zhang, X., Shiraishi, Y., & Hirai, T. (2007). Unmodified fluorescein as a fluorescent chemosensor for fluoride ion detection. Tetrahedron Letters, 48(50), 8803-8806. doi:10.1016/j.tetlet.2007.10.086 | es_ES |
dc.description.references | Swamy, K. M. K., Lee, Y. J., Lee, H. N., Chun, J., Kim, Y., Kim, S.-J., & Yoon, J. (2006). A New Fluorescein Derivative Bearing a Boronic Acid Group as a Fluorescent Chemosensor for Fluoride Ion. The Journal of Organic Chemistry, 71(22), 8626-8628. doi:10.1021/jo061429x | es_ES |
dc.description.references | Li, T., Yang, Z., Li, Y., Liu, Z., Qi, G., & Wang, B. (2011). A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion. Dyes and Pigments, 88(1), 103-108. doi:10.1016/j.dyepig.2010.05.008 | es_ES |
dc.description.references | Yang, X.-F., Li, Y., & Bai, Q. (2007). A highly selective and sensitive fluorescein-based chemodosimeter for Hg2+ ions in aqueous media. Analytica Chimica Acta, 584(1), 95-100. doi:10.1016/j.aca.2006.11.015 | es_ES |
dc.description.references | Zhang, N., Liu, Y., Tong, L., Xu, K., Zhuo, L., & Tang, B. (2008). A novel assembly of Au NPs–β-CDs–FL for the fluorescent probing of cholesterol and its application in blood serum. The Analyst, 133(9), 1176. doi:10.1039/b803226b | es_ES |
dc.description.references | Mchedlov-Petrossyan, N. O., & Mayorga, R. S. (1992). Extraordinary character of the solvent influence on protolytic equilibria: inversion of the fluorescein ionization constants in H2O–DMSO mixtures. J. Chem. Soc., Faraday Trans., 88(20), 3025-3032. doi:10.1039/ft9928803025 | es_ES |
dc.description.references | Sjöback, R., Nygren, J., & Kubista, M. (1995). Absorption and fluorescence properties of fluorescein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(6), L7-L21. doi:10.1016/0584-8539(95)01421-p | es_ES |
dc.description.references | Costero, A. M., Colera, M., Gaviña, P., & Gil, S. (2006). Fluorescent sensing of maleate versus fumarate by a neutral cyclohexane based thiourea receptor. Chemical Communications, (7), 761. doi:10.1039/b515320d | es_ES |
dc.description.references | Zhang, X.-F. (2010). The effect of phenyl substitution on the fluorescence characteristics of fluorescein derivatives via intramolecular photoinduced electron transfer. Photochemical & Photobiological Sciences, 9(9), 1261. doi:10.1039/c0pp00184h | es_ES |
dc.description.references | Gómez, D. E., Fabbrizzi, L., Licchelli, M., & Monzani, E. (2005). Urea vs. thiourea in anion recognition. Org. Biomol. Chem., 3(8), 1495-1500. doi:10.1039/b500123d | es_ES |
dc.description.references | Pérez-Casas, C., & Yatsimirsky, A. K. (2008). Detailing Hydrogen Bonding and Deprotonation Equilibria between Anions and Urea/Thiourea Derivatives. The Journal of Organic Chemistry, 73(6), 2275-2284. doi:10.1021/jo702458f | es_ES |