- -

High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

Show full item record

Primo Arnau, AM.; Esteve Adell, I.; Blandez Barradas, JF.; Amarajothi, D.; Alvaro Rodríguez, MM.; Candu, N.; Coman, SM.... (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications. 6. doi:10.1038/ncomms9561

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67462

Files in this item

Item Metadata

Title: High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 C under inert atmosphere of copper(II) nitrate ...[+]
Subjects: Chemical-vapor-deposition , Noble-metal nanoparticles , N-doped graphene , Alcohol silylation , Ullmann reaction , Biomass wastes , High-quality , Large-area , Chitosan , Performance
Copyrigths: Reconocimiento (by)
Source:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms9561
Publisher:
Nature Publishing Group
Publisher version: http://dx.doi.org/10.1038/ncomms9561
Thanks:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013-019) is gratefully acknowledged. Partial financial support from European ...[+]
Type: Artículo

References

Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010).

Li, X., Wang, X., Song, S., Liu, D. & Zhang, H. Selectively deposited noble metal nanoparticles on fe3o4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem. Eur. J. 18, 7601–7760 (2012).

Liang, Y. et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012). [+]
Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010).

Li, X., Wang, X., Song, S., Liu, D. & Zhang, H. Selectively deposited noble metal nanoparticles on fe3o4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem. Eur. J. 18, 7601–7760 (2012).

Liang, Y. et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012).

Ghanbarlou, H., Rowshanzamir, S., Kazeminasab, B. & Parnian, M. J. Non-precious metal nanoparticles supported on nitrogen-doped graphene as a promising catalyst for oxygen reduction reaction: synthesis, characterization and electrocatalytic performance. J. Power Sources 273, 981–989 (2015).

Chu, H. et al. Ionic-liquid-assisted preparation of carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv. Funct. Mater. 20, 3747–3752 (2010).

Ramulifho, T., Ozoemena, K. I., Modibedi, R. M., Jafta, C. J. & Mathe, M. K. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim. Acta 59, 310–320 (2012).

Wang, Y., Zhao, Y., He, W., Yin, J. & Su, Y. Palladium nanoparticles supported on reduced graphene oxide: facile synthesis and highly efficient electrocatalytic performance for methanol oxidation. Thin Solid Films 544, 88–92 (2013).

He, Y. et al. Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589 (2012).

Li, Z. et al. One-pot synthesis of pd nanoparticle catalysts supported on n-doped carbon and application in the domino carbonylation. ACS Catal. 3, 839–845 (2013).

Xiang, G., He, J., Li, T., Zhuang, J. & Wang, X. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale 3, 3737–3742 (2011).

Li, Z. et al. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Phys. Chem. Chem. Phys. 13, 2582–2589 (2011).

Ding, M., Tang, Y. & Star, A. Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147–160 (2013).

Wildgoose, G. G., Banks, C. E. & Compton, R. G. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2, 182–193 (2006).

Blandez, J. F., Primo, A., Asiri, A. M., Álvaro, M. & García, H. Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols. Angew. Chem. Int. Ed. 53, 12581–12586 (2014).

Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240–8254 (2014).

Zhang, N., Zhang, Y. & Xu, Y. J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012).

Parga, A. L. V. de., Ha nacido una estrella. El grafeno. An. Quím. 107, 213–220 (2011).

Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009).

Sun, T. et al. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Nature 3, 1–6 (2013).

Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009).

Jin, X. et al. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7, 1309–1316 (2013).

Hong, C. et al. Graphene oxide stabilized Cu2O for shape selective nanocatalysis. J. Mater. Chem. A 2, 7147–7151 (2014).

Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).

Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

Mattevi, C., Kima, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2010).

Liu, W., Li, H., Xu, C., Khatami, Y. & Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011).

Losurdo, M., Giangregorio, M. M., Capezzuto, P. & Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836–20843 (2011).

Gao, L., Guest, J. R. & Guisinguer, N. P. Epitaxial graphene on Cu (111). Nano Lett. 10, 3512–3516 (2010).

Zhao, L. et al. Influence of copper crystal surface on the growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011).

Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E. & Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011).

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & Garcia, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012).

Primo, A., Sánchez, E., Delgado, J. M. & García, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68, 777–783 (2014).

Primo, A., Forneli, A., Corma, A. & García, H. From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. ChemSusChem. 5, 2207–2214 (2012).

Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000).

Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).

Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008).

Latorre-Sanchez, M. et al. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 50, 518–525 (2012).

Park, B. K. et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311, 417–424 (2007).

Lavorato, C., Primo, A., Molinari, R. & Garcia, H. Natural alginate as a graphene precursor and template in the synthesis of nanoparticulate ceria/graphene water oxidation photocatalysts. ACS Catal. 4, 497–504 (2014).

Wu, S. et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J. Mater. Chem. 21, 3467–3470 (2011).

Jiang, L. et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5, 2784–2789 (2013).

Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. Microscopy Science, Technology, Applications and Education Vol. 2, 1232–1244Formatex, Badajos (2011).

Lewin, A. H. & Cohen, T. The mechanism of the Ullman reaction. Detection of an organocopper intermediate. Tetrahedron Lett. 6, 4531–4536 (1965).

Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002).

Ma, D., Cai, Q. & Zhang, H. Mild method for Ullman coupling reaction of amines and aryl halides. Org. Lett. 5, 2453–2455 (2003).

Li, Y., Gao, W., Ci, L., Wang, C. & Ajayan, P. M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48, 1124–1130 (2010).

Ong, W.-J., Tan, L.-L., Chai, S.-P. & Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015).

Luo, C., Zhang, Y., Zeng, X., Zeng, Y. & Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005).

Wu, S.-H. & Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259, 282–286 (2003).

Hou, Z., Theyssen, N., Brinkmann, A. & Leitner, W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Int. Ed. 117, 1370–1373 (2005).

Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M. & Garcia, H. Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chem. Commun. 49, 2359–2361 (2013).

Ito, H., Watanabe, A. & Sawamura, M. Versatile dehydrogenative alcohol silylation catalyzed by Cu (I)-phosphine complex. Org. Lett. 7, 1869–1871 (2005).

Rendler, S. et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the Cu-H-catalyzed non-enzimatic kinetic resolution with silicon-stereogenic silanes. Chem. Eur. J. 14, 11512–11528 (2008).

Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chemistry 10, 5607–5622 (2004).

Shafir, A. & Buchwald, S. L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc. 128, 8742–8743 (2006).

[-]

This item appears in the following Collection(s)

Show full item record