- -

Genetic programming and serial processing for time series classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic programming and serial processing for time series classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alfaro Cid, Eva es_ES
dc.contributor.author Sharman, Kenneth Charles es_ES
dc.contributor.author Esparcia Alcázar, Anna Isabel es_ES
dc.date.accessioned 2016-07-13T10:33:57Z
dc.date.available 2016-07-13T10:33:57Z
dc.date.issued 2014-06
dc.identifier.issn 1063-6560
dc.identifier.uri http://hdl.handle.net/10251/67540
dc.description.abstract This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets. es_ES
dc.language Inglés es_ES
dc.publisher Massachusetts Institute of Technology Press (MIT Press) es_ES
dc.relation.ispartof Evolutionary Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Time series es_ES
dc.subject Real world applications es_ES
dc.subject Serial data processing es_ES
dc.subject Classification es_ES
dc.subject Genetic programming es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Genetic programming and serial processing for time series classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1162/EVCO_a_00110
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Alfaro Cid, E.; Sharman, KC.; Esparcia Alcázar, AI. (2014). Genetic programming and serial processing for time series classification. Evolutionary Computation. 22(2):265-285. doi:10.1162/EVCO_a_00110 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1162/EVCO_a_00110 es_ES
dc.description.upvformatpinicio 265 es_ES
dc.description.upvformatpfin 285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 290184 es_ES
dc.description.references Adeodato, P. J. L., Arnaud, A. L., Vasconcelos, G. C., Cunha, R. C. L. V., Gurgel, T. B., & Monteiro, D. S. M. P. (2009). The role of temporal feature extraction and bagging of MLP neural networks for solving the WCCI 2008 Ford Classification Challenge. 2009 International Joint Conference on Neural Networks. doi:10.1109/ijcnn.2009.5178965 es_ES
dc.description.references Alfaro-Cid, E., Merelo, J. J., de Vega, F. F., Esparcia-Alcázar, A. I., & Sharman, K. (2010). Bloat Control Operators and Diversity in Genetic Programming: A Comparative Study. Evolutionary Computation, 18(2), 305-332. doi:10.1162/evco.2010.18.2.18206 es_ES
dc.description.references Alfaro-Cid, E., Sharman, K., & Esparcia-Alcazar, A. I. (s. f.). Evolving a Learning Machine by Genetic Programming. 2006 IEEE International Conference on Evolutionary Computation. doi:10.1109/cec.2006.1688316 es_ES
dc.description.references Arenas, M. G., Collet, P., Eiben, A. E., Jelasity, M., Merelo, J. J., Paechter, B., … Schoenauer, M. (2002). A Framework for Distributed Evolutionary Algorithms. Lecture Notes in Computer Science, 665-675. doi:10.1007/3-540-45712-7_64 es_ES
dc.description.references Blankertz, B., Muller, K.-R., Curio, G., Vaughan, T. M., Schalk, G., Wolpaw, J. R., … Birbaumer, N. (2004). The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials. IEEE Transactions on Biomedical Engineering, 51(6), 1044-1051. doi:10.1109/tbme.2004.826692 es_ES
dc.description.references Borrelli, A., De Falco, I., Della Cioppa, A., Nicodemi, M., & Trautteur, G. (2006). Performance of genetic programming to extract the trend in noisy data series. Physica A: Statistical Mechanics and its Applications, 370(1), 104-108. doi:10.1016/j.physa.2006.04.025 es_ES
dc.description.references Eads, D. R., Hill, D., Davis, S., Perkins, S. J., Ma, J., Porter, R. B., & Theiler, J. P. (2002). Genetic Algorithms and Support Vector Machines for Time Series Classification. Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V. doi:10.1117/12.453526 es_ES
dc.description.references Eggermont, J., Eiben, A. E., & van Hemert, J. I. (1999). A Comparison of Genetic Programming Variants for Data Classification. Lecture Notes in Computer Science, 281-290. doi:10.1007/3-540-48412-4_24 es_ES
dc.description.references Holladay, K. L., & Robbins, K. A. (2007). Evolution of Signal Processing Algorithms using Vector Based Genetic Programming. 2007 15th International Conference on Digital Signal Processing. doi:10.1109/icdsp.2007.4288629 es_ES
dc.description.references Kaboudan, M. A. (2000). Computational Economics, 16(3), 207-236. doi:10.1023/a:1008768404046 es_ES
dc.description.references Kishore, J. K., Patnaik, L. M., Mani, V., & Agrawal, V. K. (2000). Application of genetic programming for multicategory pattern classification. IEEE Transactions on Evolutionary Computation, 4(3), 242-258. doi:10.1109/4235.873235 es_ES
dc.description.references Kishore, J. K., Patnaik, L. M., Mani, V., & Agrawal, V. K. (2001). Genetic programming based pattern classification with feature space partitioning. Information Sciences, 131(1-4), 65-86. doi:10.1016/s0020-0255(00)00081-5 es_ES
dc.description.references Langdon, W. B., McKay, R. I., & Spector, L. (2010). Genetic Programming. International Series in Operations Research & Management Science, 185-225. doi:10.1007/978-1-4419-1665-5_7 es_ES
dc.description.references Yi Liu, & Khoshgoftaar, T. (s. f.). Reducing overfitting in genetic programming models for software quality classification. Eighth IEEE International Symposium on High Assurance Systems Engineering, 2004. Proceedings. doi:10.1109/hase.2004.1281730 es_ES
dc.description.references Luke, S. (2000). Two fast tree-creation algorithms for genetic programming. IEEE Transactions on Evolutionary Computation, 4(3), 274-283. doi:10.1109/4235.873237 es_ES
dc.description.references Luke, S., & Panait, L. (2006). A Comparison of Bloat Control Methods for Genetic Programming. Evolutionary Computation, 14(3), 309-344. doi:10.1162/evco.2006.14.3.309 es_ES
dc.description.references Mensh, B. D., Werfel, J., & Seung, H. S. (2004). BCI Competition 2003—Data Set Ia: Combining Gamma-Band Power With Slow Cortical Potentials to Improve Single-Trial Classification of Electroencephalographic Signals. IEEE Transactions on Biomedical Engineering, 51(6), 1052-1056. doi:10.1109/tbme.2004.827081 es_ES
dc.description.references Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic programming for simultaneous feature selection and classifier design. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36(1), 106-117. doi:10.1109/tsmcb.2005.854499 es_ES
dc.description.references Oltean, M., & Dioşan, L. (2009). An autonomous GP-based system for regression and classification problems. Applied Soft Computing, 9(1), 49-60. doi:10.1016/j.asoc.2008.03.008 es_ES
dc.description.references Otero, F. E. B., Silva, M. M. S., Freitas, A. A., & Nievola, J. C. (2003). Genetic Programming for Attribute Construction in Data Mining. Genetic Programming, 384-393. doi:10.1007/3-540-36599-0_36 es_ES
dc.description.references Poli, R. (2010). Genetic programming theory. Proceedings of the 12th annual conference comp on Genetic and evolutionary computation - GECCO ’10. doi:10.1145/1830761.1830905 es_ES
dc.description.references Tsakonas, A. (2006). A comparison of classification accuracy of four genetic programming-evolved intelligent structures. Information Sciences, 176(6), 691-724. doi:10.1016/j.ins.2005.03.012 es_ES
dc.description.references Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., … Vaughan, T. M. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164-173. doi:10.1109/tre.2000.847807 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem