Cheong, S.-W., & Mostovoy, M. (2007). Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20. doi:10.1038/nmat1804
Finger, T., Senff, D., Schmalzl, K., Schmidt, W., Regnault, L. P., Becker, P., … Braden, M. (2010). Electric-field control of the chiral magnetism of multiferroicMnWO4as seen via polarized neutron diffraction. Physical Review B, 81(5). doi:10.1103/physrevb.81.054430
Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902. doi:10.1107/s0567740872007186
[+]
Cheong, S.-W., & Mostovoy, M. (2007). Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20. doi:10.1038/nmat1804
Finger, T., Senff, D., Schmalzl, K., Schmidt, W., Regnault, L. P., Becker, P., … Braden, M. (2010). Electric-field control of the chiral magnetism of multiferroicMnWO4as seen via polarized neutron diffraction. Physical Review B, 81(5). doi:10.1103/physrevb.81.054430
Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902. doi:10.1107/s0567740872007186
Dachs, H., Weitzel, H., & Stoll, E. (1966). Magnetic structure of manganesetungstate MnWO4 at 4.2°K. Solid State Communications, 4(9), 473-474. doi:10.1016/0038-1098(66)90333-4
Dachs, H., Stoll, E., & Weitzel, H. (1967). Kristallstruktur und magnetische Ordnung des Hübnerits, MnWO4. Zeitschrift für Kristallographie, 125(125), 120-129. doi:10.1524/zkri.1967.125.125.120
Lautenschläger, G., Weitzel, H., Vogt, T., Hock, R., Böhm, A., Bonnet, M., & Fuess, H. (1993). Magnetic phase transitions ofMnWO4studied by the use of neutron diffraction. Physical Review B, 48(9), 6087-6098. doi:10.1103/physrevb.48.6087
Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y., & Arima, T. (2006). Ferroelectric Polarization Flop in a Frustrated MagnetMnWO4Induced by a Magnetic Field. Physical Review Letters, 97(9). doi:10.1103/physrevlett.97.097203
Heyer, O., Hollmann, N., Klassen, I., Jodlauk, S., Bohatý, L., Becker, P., … Khomskii, D. (2006). A new multiferroic material: MnWO4. Journal of Physics: Condensed Matter, 18(39), L471-L475. doi:10.1088/0953-8984/18/39/l01
Meier, D., Maringer, M., Lottermoser, T., Becker, P., Bohatý, L., & Fiebig, M. (2009). Observation and Coupling of Domains in a Spin-Spiral Multiferroic. Physical Review Letters, 102(10). doi:10.1103/physrevlett.102.107202
Urcelay-Olabarria, I., Perez-Mato, J. M., Ribeiro, J. L., García-Muñoz, J. L., Ressouche, E., Skumryev, V., & Mukhin, A. A. (2013). Incommensurate magnetic structures of multiferroic MnWO4studied within the superspace formalism. Physical Review B, 87(1). doi:10.1103/physrevb.87.014419
Nojiri, H., Yoshii, S., Yasui, M., Okada, K., Matsuda, M., Jung, J.-S., … Gaulin, B. D. (2011). Neutron Laue Diffraction Study on the Magnetic Phase Diagram of MultiferroicMnWO4under Pulsed High Magnetic Fields. Physical Review Letters, 106(23). doi:10.1103/physrevlett.106.237202
Chaudhury, R. P., Yen, F., dela Cruz, C. R., Lorenz, B., Wang, Y. Q., Sun, Y. Y., & Chu, C. W. (2008). Thermal expansion and pressure effect in. Physica B: Condensed Matter, 403(5-9), 1428-1430. doi:10.1016/j.physb.2007.10.327
Macavei, J., & Schulz, H. (1993). The crystal structure of wolframite type tungstates at high pressure. Zeitschrift für Kristallographie - Crystalline Materials, 207(2). doi:10.1524/zkri.1993.207.part-2.193
Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202
Ruiz-Fuertes, J., Errandonea, D., Gomis, O., Friedrich, A., & Manjón, F. J. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics, 115(4), 043510. doi:10.1063/1.4863236
Dai, R. C., Ding, X., Wang, Z. P., & Zhang, Z. M. (2013). Pressure and temperature dependence of Raman scattering of MnWO4. Chemical Physics Letters, 586, 76-80. doi:10.1016/j.cplett.2013.09.035
Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116
Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112
Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848
López-Moreno, S., Romero, A. H., Rodríguez-Hernández, P., & Muñoz, A. (2009). Ab initiocalculations of the wolframite MnWO4under high pressure. High Pressure Research, 29(4), 578-581. doi:10.1080/08957950903438481
Boehler, R. (2006). New diamond cell for single-crystal x-ray diffraction. Review of Scientific Instruments, 77(11), 115103. doi:10.1063/1.2372734
Iliev, M. N., Gospodinov, M. M., & Litvinchuk, A. P. (2009). Raman spectroscopy ofMnWO4. Physical Review B, 80(21). doi:10.1103/physrevb.80.212302
Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673
Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413
Dewaele, A., Datchi, F., Loubeyre, P., & Mezouar, M. (2008). High pressure–high temperature equations of state of neon and diamond. Physical Review B, 77(9). doi:10.1103/physrevb.77.094106
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408
Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07
Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242
Le Bail, A. (2005). Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction, 20(4), 316-326. doi:10.1154/1.2135315
Rothkirch, A., Gatta, G. D., Meyer, M., Merkel, S., Merlini, M., & Liermann, H.-P. (2013). Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. Journal of Synchrotron Radiation, 20(5), 711-720. doi:10.1107/s0909049513018621
Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930
Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110
Ruiz-Fuertes, J., Errandonea, D., Lacomba-Perales, R., Segura, A., González, J., Rodríguez, F., … Tu, C. Y. (2010). High-pressure structural phase transitions inCuWO4. Physical Review B, 81(22). doi:10.1103/physrevb.81.224115
Rocquefelte, X., Schwarz, K., Blaha, P., Kumar, S., & van den Brink, J. (2013). Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nature Communications, 4(1). doi:10.1038/ncomms3511
[-]