Mostrar el registro sencillo del ítem
dc.contributor.author | De Jong, M | es_ES |
dc.contributor.author | Wolters-Arts, M | es_ES |
dc.contributor.author | Garcia Martinez, Jose L | es_ES |
dc.contributor.author | Mariani, C | es_ES |
dc.contributor.author | Vriezen, W.H | es_ES |
dc.date.accessioned | 2016-07-14T08:00:46Z | |
dc.date.available | 2016-07-14T08:00:46Z | |
dc.date.issued | 2011-01 | |
dc.identifier.issn | 0022-0957 | |
dc.identifier.uri | http://hdl.handle.net/10251/67591 | |
dc.description | Supplementary data are available at JXB online http://jxb.oxfordjournals.org/content/62/2/617/suppl/DC1 | es_ES |
dc.description.abstract | [EN] Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | AUXIN RESPONSE FACTOR | es_ES |
dc.subject | Fruit development | es_ES |
dc.subject | Gibberellin (GA) | es_ES |
dc.subject | Parthenocarpy | es_ES |
dc.subject | Tomato | es_ES |
dc.title | The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/erq293 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | De Jong, M.; Wolters-Arts, M.; Garcia Martinez, JL.; Mariani, C.; Vriezen, W. (2011). The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development. Journal of Experimental Botany. 62(2):617-626. doi:10.1093/jxb/erq293 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1093/jxb/erq293 | es_ES |
dc.description.upvformatpinicio | 617 | es_ES |
dc.description.upvformatpfin | 626 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 214053 | es_ES |
dc.identifier.pmid | 20937732 | en_EN |
dc.identifier.pmcid | PMC3003806 | en_EN |
dc.description.references | Cheniclet, C., Rong, W. Y., Causse, M., Frangne, N., Bolling, L., Carde, J.-P., & Renaudin, J.-P. (2005). Cell Expansion and Endoreduplication Show a Large Genetic Variability in Pericarp and Contribute Strongly to Tomato Fruit Growth. Plant Physiology, 139(4), 1984-1994. doi:10.1104/pp.105.068767 | es_ES |
dc.description.references | De Jong, M., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5), 1523-1532. doi:10.1093/jxb/erp094 | es_ES |
dc.description.references | De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C., & Vriezen, W. H. (2009). TheSolanum lycopersicumauxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal, 57(1), 160-170. doi:10.1111/j.1365-313x.2008.03671.x | es_ES |
dc.description.references | Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x | es_ES |
dc.description.references | Fos, M., Nuez, F., & Garcı́a-Martı́nez, J. L. (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries. Plant Physiology, 122(2), 471-480. doi:10.1104/pp.122.2.471 | es_ES |
dc.description.references | Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439 | es_ES |
dc.description.references | Gustafson, F. G. (1937). Parthenocarpy Induced by Pollen Extracts. American Journal of Botany, 24(2), 102. doi:10.2307/2436729 | es_ES |
dc.description.references | Gustafson, F. G. (1960). Influence of Gibberellic Acid on Setting and Development of Fruits in Tomato. Plant Physiology, 35(4), 521-523. doi:10.1104/pp.35.4.521 | es_ES |
dc.description.references | Hedden, P., & Kamiya, Y. (1997). GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 431-460. doi:10.1146/annurev.arplant.48.1.431 | es_ES |
dc.description.references | Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 | es_ES |
dc.description.references | Joubès, J., Lemaire-Chamley, M., Delmas, F., Walter, J., Hernould, M., Mouras, A., … Chevalier, C. (2001). A New C-Type Cyclin-Dependent Kinase from Tomato Expressed in Dividing Tissues Does Not Interact with Mitotic and G1 Cyclins. Plant Physiology, 126(4), 1403-1415. doi:10.1104/pp.126.4.1403 | es_ES |
dc.description.references | Joubès, J., Walsh, D., Raymond, P., & Chevalier, C. (2000). Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta, 211(3), 430-439. doi:10.1007/s004250000306 | es_ES |
dc.description.references | Koshioka, M., Nishijima, T., Yamazaki, H., Liu, Y., Nonaka, M., & Mander, L. N. (1994). Analysis of gibberellins in growing fruits ofLycopersicon esculentumafter pollination or treatment with 4-chlorophenoxyacetic acid. Journal of Horticultural Science, 69(1), 171-179. doi:10.1080/14620316.1994.11515263 | es_ES |
dc.description.references | Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J., & Granell, A. (2007). Silencing ofDELLAinduces facultative parthenocarpy in tomato fruits. The Plant Journal, 52(5), 865-876. doi:10.1111/j.1365-313x.2007.03282.x | es_ES |
dc.description.references | Ozga, J. A., & Reinecke, D. M. (2003). Hormonal Interactions in Fruit Development. Journal of Plant Growth Regulation, 22(1), 73-81. doi:10.1007/s00344-003-0024-9 | es_ES |
dc.description.references | Pandolfini, T., Rotino, G. L., Camerini, S., Defez, R., & Spena, A. (2002). BMC Biotechnology, 2(1), 1. doi:10.1186/1472-6750-2-1 | es_ES |
dc.description.references | Pascual, L., Blanca, J. M., Cañizares, J., & Nuez, F. (2009). Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biology, 9(1), 67. doi:10.1186/1471-2229-9-67 | es_ES |
dc.description.references | Rebers, M., Kaneta, T., Kawaide, H., Yamaguchi, S., Yang, Y.-Y., Imai, R., … Kamiya, Y. (1999). Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. The Plant Journal, 17(3), 241-250. doi:10.1046/j.1365-313x.1999.00366.x | es_ES |
dc.description.references | Serrani, J. C., Fos, M., Atarés, A., & García-Martínez, J. L. (2007). Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the cv Micro-Tom of Tomato. Journal of Plant Growth Regulation, 26(3), 211-221. doi:10.1007/s00344-007-9014-7 | es_ES |
dc.description.references | Serrani, J. C., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal, 56(6), 922-934. doi:10.1111/j.1365-313x.2008.03654.x | es_ES |
dc.description.references | Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335 | es_ES |
dc.description.references | Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., & Suza, W. (2005). Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid. The Plant Cell, 17(2), 616-627. doi:10.1105/tpc.104.026690 | es_ES |
dc.description.references | Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., & Matsuoka, M. (2007). Gibberellin Receptor and Its Role in Gibberellin Signaling in Plants. Annual Review of Plant Biology, 58(1), 183-198. doi:10.1146/annurev.arplant.58.032806.103830 | es_ES |
dc.description.references | Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 | es_ES |
dc.description.references | Wittwer, S. H., Bukovac, M. J., Sell, H. M., & Weller, L. E. (1957). Some Effects of Gibberellin on Flowering and Fruit Setting. Plant Physiology, 32(1), 39-41. doi:10.1104/pp.32.1.39 | es_ES |
dc.description.references | Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1), 49. doi:10.1186/1471-2229-9-49 | es_ES |
dc.description.references | Yamaguchi, S., & Kamiya, Y. (2000). Gibberellin Biosynthesis: Its Regulation by Endogenous and Environmental Signals. Plant and Cell Physiology, 41(3), 251-257. doi:10.1093/pcp/41.3.251 | es_ES |