- -

The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De Jong, M es_ES
dc.contributor.author Wolters-Arts, M es_ES
dc.contributor.author Garcia Martinez, Jose L es_ES
dc.contributor.author Mariani, C es_ES
dc.contributor.author Vriezen, W.H es_ES
dc.date.accessioned 2016-07-14T08:00:46Z
dc.date.available 2016-07-14T08:00:46Z
dc.date.issued 2011-01
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/67591
dc.description Supplementary data are available at JXB online http://jxb.oxfordjournals.org/content/62/2/617/suppl/DC1 es_ES
dc.description.abstract [EN] Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AUXIN RESPONSE FACTOR es_ES
dc.subject Fruit development es_ES
dc.subject Gibberellin (GA) es_ES
dc.subject Parthenocarpy es_ES
dc.subject Tomato es_ES
dc.title The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erq293
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation De Jong, M.; Wolters-Arts, M.; Garcia Martinez, JL.; Mariani, C.; Vriezen, W. (2011). The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development. Journal of Experimental Botany. 62(2):617-626. doi:10.1093/jxb/erq293 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1093/jxb/erq293 es_ES
dc.description.upvformatpinicio 617 es_ES
dc.description.upvformatpfin 626 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 214053 es_ES
dc.identifier.pmid 20937732 en_EN
dc.identifier.pmcid PMC3003806 en_EN
dc.description.references Cheniclet, C., Rong, W. Y., Causse, M., Frangne, N., Bolling, L., Carde, J.-P., & Renaudin, J.-P. (2005). Cell Expansion and Endoreduplication Show a Large Genetic Variability in Pericarp and Contribute Strongly to Tomato Fruit Growth. Plant Physiology, 139(4), 1984-1994. doi:10.1104/pp.105.068767 es_ES
dc.description.references De Jong, M., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5), 1523-1532. doi:10.1093/jxb/erp094 es_ES
dc.description.references De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C., & Vriezen, W. H. (2009). TheSolanum lycopersicumauxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal, 57(1), 160-170. doi:10.1111/j.1365-313x.2008.03671.x es_ES
dc.description.references Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x es_ES
dc.description.references Fos, M., Nuez, F., & Garcı́a-Martı́nez, J. L. (2000). The Gene pat-2, Which Induces Natural Parthenocarpy, Alters the Gibberellin Content in Unpollinated Tomato Ovaries. Plant Physiology, 122(2), 471-480. doi:10.1104/pp.122.2.471 es_ES
dc.description.references Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439 es_ES
dc.description.references Gustafson, F. G. (1937). Parthenocarpy Induced by Pollen Extracts. American Journal of Botany, 24(2), 102. doi:10.2307/2436729 es_ES
dc.description.references Gustafson, F. G. (1960). Influence of Gibberellic Acid on Setting and Development of Fruits in Tomato. Plant Physiology, 35(4), 521-523. doi:10.1104/pp.35.4.521 es_ES
dc.description.references Hedden, P., & Kamiya, Y. (1997). GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 431-460. doi:10.1146/annurev.arplant.48.1.431 es_ES
dc.description.references Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 es_ES
dc.description.references Joubès, J., Lemaire-Chamley, M., Delmas, F., Walter, J., Hernould, M., Mouras, A., … Chevalier, C. (2001). A New C-Type Cyclin-Dependent Kinase from Tomato Expressed in Dividing Tissues Does Not Interact with Mitotic and G1 Cyclins. Plant Physiology, 126(4), 1403-1415. doi:10.1104/pp.126.4.1403 es_ES
dc.description.references Joubès, J., Walsh, D., Raymond, P., & Chevalier, C. (2000). Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta, 211(3), 430-439. doi:10.1007/s004250000306 es_ES
dc.description.references Koshioka, M., Nishijima, T., Yamazaki, H., Liu, Y., Nonaka, M., & Mander, L. N. (1994). Analysis of gibberellins in growing fruits ofLycopersicon esculentumafter pollination or treatment with 4-chlorophenoxyacetic acid. Journal of Horticultural Science, 69(1), 171-179. doi:10.1080/14620316.1994.11515263 es_ES
dc.description.references Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J., & Granell, A. (2007). Silencing ofDELLAinduces facultative parthenocarpy in tomato fruits. The Plant Journal, 52(5), 865-876. doi:10.1111/j.1365-313x.2007.03282.x es_ES
dc.description.references Ozga, J. A., & Reinecke, D. M. (2003). Hormonal Interactions in Fruit Development. Journal of Plant Growth Regulation, 22(1), 73-81. doi:10.1007/s00344-003-0024-9 es_ES
dc.description.references Pandolfini, T., Rotino, G. L., Camerini, S., Defez, R., & Spena, A. (2002). BMC Biotechnology, 2(1), 1. doi:10.1186/1472-6750-2-1 es_ES
dc.description.references Pascual, L., Blanca, J. M., Cañizares, J., & Nuez, F. (2009). Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biology, 9(1), 67. doi:10.1186/1471-2229-9-67 es_ES
dc.description.references Rebers, M., Kaneta, T., Kawaide, H., Yamaguchi, S., Yang, Y.-Y., Imai, R., … Kamiya, Y. (1999). Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. The Plant Journal, 17(3), 241-250. doi:10.1046/j.1365-313x.1999.00366.x es_ES
dc.description.references Serrani, J. C., Fos, M., Atarés, A., & García-Martínez, J. L. (2007). Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the cv Micro-Tom of Tomato. Journal of Plant Growth Regulation, 26(3), 211-221. doi:10.1007/s00344-007-9014-7 es_ES
dc.description.references Serrani, J. C., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal, 56(6), 922-934. doi:10.1111/j.1365-313x.2008.03654.x es_ES
dc.description.references Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335 es_ES
dc.description.references Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., & Suza, W. (2005). Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid. The Plant Cell, 17(2), 616-627. doi:10.1105/tpc.104.026690 es_ES
dc.description.references Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., & Matsuoka, M. (2007). Gibberellin Receptor and Its Role in Gibberellin Signaling in Plants. Annual Review of Plant Biology, 58(1), 183-198. doi:10.1146/annurev.arplant.58.032806.103830 es_ES
dc.description.references Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 es_ES
dc.description.references Wittwer, S. H., Bukovac, M. J., Sell, H. M., & Weller, L. E. (1957). Some Effects of Gibberellin on Flowering and Fruit Setting. Plant Physiology, 32(1), 39-41. doi:10.1104/pp.32.1.39 es_ES
dc.description.references Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1), 49. doi:10.1186/1471-2229-9-49 es_ES
dc.description.references Yamaguchi, S., & Kamiya, Y. (2000). Gibberellin Biosynthesis: Its Regulation by Endogenous and Environmental Signals. Plant and Cell Physiology, 41(3), 251-257. doi:10.1093/pcp/41.3.251 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem