Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)
Argyros, I.K.: The Newton-Kantorovich method under mild differentiability conditions and the Pták error estimates. Monatsh. Math. 101, 175–193 (1990)
Argyros, I.K.: Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23(4), 269–277 (1992)
[+]
Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)
Argyros, I.K.: The Newton-Kantorovich method under mild differentiability conditions and the Pták error estimates. Monatsh. Math. 101, 175–193 (1990)
Argyros, I.K.: Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23(4), 269–277 (1992)
Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)
Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22(2), 187–205 (2002)
Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)
Hueso, J.L., Martínez, E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)
Hueso, J.L., Martínez, E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algor. In Press. doi: 10.1007/s11075-013-9795-7
Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)
Ostrowski, A.M.: Solutions of equations and system of equations. Academic Press, New York (1960)
Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)
Yamamoto, T.: A method for finding sharp error bounds for Newton’s method under the Kantorovich assumptions. Numer. Math. 49, 203–220 (1986)
[-]