- -

On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions

Show full item record

Hernandez Verón, MA.; Martínez Molada, E. (2015). On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions. Numerical Algorithms. 70(2):377-392. doi:10.1007/s11075-014-9952-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67651

Files in this item

Item Metadata

Title: On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper the semilocal convergence for an alternative to the three steps Newton's method with frozen derivative is presented. We analyze the generalization of convergence conditions given by w-conditioned ...[+]
Subjects: Iterative methods , Nonlinear equations , Semilocal convergence , Mild convergence conditions. , Order of convergence , Hammerstein equation
Copyrigths: Cerrado
Source:
Numerical Algorithms. (issn: 1017-1398 ) (eissn: 1572-9265 )
DOI: 10.1007/s11075-014-9952-7
Publisher:
Springer Verlag (Germany)
Publisher version: https://dx.doi.org/10.1007/s11075-014-9952-7
Thanks:
This work was supported in part by the project MTM2011-28636-C02-01-{01,02} of the Spanish Ministry of Science and Innovation.
Type: Artículo

References

Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)

Argyros, I.K.: The Newton-Kantorovich method under mild differentiability conditions and the Pták error estimates. Monatsh. Math. 101, 175–193 (1990)

Argyros, I.K.: Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23(4), 269–277 (1992) [+]
Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)

Argyros, I.K.: The Newton-Kantorovich method under mild differentiability conditions and the Pták error estimates. Monatsh. Math. 101, 175–193 (1990)

Argyros, I.K.: Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23(4), 269–277 (1992)

Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22(2), 187–205 (2002)

Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)

Hueso, J.L., Martínez, E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)

Hueso, J.L., Martínez, E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algor. In Press. doi: 10.1007/s11075-013-9795-7

Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)

Ostrowski, A.M.: Solutions of equations and system of equations. Academic Press, New York (1960)

Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)

Yamamoto, T.: A method for finding sharp error bounds for Newton’s method under the Kantorovich assumptions. Numer. Math. 49, 203–220 (1986)

[-]

This item appears in the following Collection(s)

Show full item record