dc.contributor.author |
Bru García, Rafael
|
es_ES |
dc.contributor.author |
Marín Mateos-Aparicio, José
|
es_ES |
dc.contributor.author |
Mas Marí, José
|
es_ES |
dc.contributor.author |
Tuma, Miroslav
|
es_ES |
dc.date.accessioned |
2016-07-18T09:56:29Z |
|
dc.date.available |
2016-07-18T09:56:29Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
0895-4798 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/67736 |
|
dc.description.abstract |
[EN] . In this paper we improve the BIF algorithm which computes simultaneously the LU
factors (direct factors) of a given matrix and their inverses (inverse factors). This algorithm was
introduced in [R. Bru, J. Mar´ın, J. Mas, and M. T˚uma, SIAM J. Sci. Comput., 30 (2008), pp. 2302–
2318]. The improvements are based on a deeper understanding of the inverse Sherman–Morrison
(ISM) decomposition, and they provide a new insight into the BIF decomposition. In particular,
it is shown that a slight algorithmic reformulation of the basic algorithm implies that the direct
and inverse factors numerically influence each other even without any dropping for incompleteness.
Algorithmically, the nonsymmetric version of the improved BIF algorithm is formulated. Numerical
experiments show very high robustness of the incomplete implementation of the algorithm used for
preconditioning nonsymmetric linear systems |
es_ES |
dc.description.sponsorship |
Received by the editors January 26, 2009; accepted for publication (in revised form) by V. Simoncini June 1, 2010; published electronically August 12, 2010. This work was supported by Spanish grant MTM 2007-64477, by project IAA100300802 of the Grant Agency of the Academy of Sciences of the Czech Republic, and partially also by the International Collaboration Support M100300902 of AS CR. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Society for Industrial and Applied Mathematics |
es_ES |
dc.relation.ispartof |
SIAM Journal on Matrix Analysis and Applications |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Preconditioned iterative methods |
es_ES |
dc.subject |
Sparse matrices |
es_ES |
dc.subject |
Incomplete decompositions |
es_ES |
dc.subject |
Approximate inverses |
es_ES |
dc.subject |
Sherman–Morrison formula, nonsymmetric matrices |
es_ES |
dc.subject |
Sherman–Morrison formula |
es_ES |
dc.subject |
Nonsymmetric matrices |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Improved balanced incomplete factorization |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1137/090747804 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/CAS//IAA100300802/CZ/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CAS//M100300902/CZ/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//MTM2007-64477/ES/ANALISIS MATRICIAL, MATRICES NO NEGATIVAS Y APLICACIONES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Bru García, R.; Marín Mateos-Aparicio, J.; Mas Marí, J.; Tuma, M. (2010). Improved balanced incomplete factorization. SIAM Journal on Matrix Analysis and Applications. 31(5):2431-2452. https://doi.org/10.1137/090747804 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://dx.doi.org/10.1137/090747804 |
es_ES |
dc.description.upvformatpinicio |
2431 |
es_ES |
dc.description.upvformatpfin |
2452 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
31 |
es_ES |
dc.description.issue |
5 |
es_ES |
dc.relation.senia |
39791 |
es_ES |
dc.contributor.funder |
Czech Academy of Sciences |
es_ES |
dc.contributor.funder |
Ministerio de Educación y Ciencia |
es_ES |