- -

Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl-derived embryos and using plant-derived smoke extract in culture medium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl-derived embryos and using plant-derived smoke extract in culture medium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abdollahi, M.R. es_ES
dc.contributor.author Ghazanfari, P. es_ES
dc.contributor.author Corral Martínez, Patricia es_ES
dc.contributor.author Moieni, A. es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2016-07-19T06:49:11Z
dc.date.available 2016-07-19T06:49:11Z
dc.date.issued 2012-08
dc.identifier.issn 0167-6857
dc.identifier.uri http://hdl.handle.net/10251/67777
dc.description.abstract Induction of secondary embryogenesis on transformed androgenic microspore-derived embryos (MDEs) is a convenient approach to avoid chimerism and hemizygosis for the introduced transgene. In this work, we improved two aspects related to secondary embryogenesis in rapeseed (Brassica napus L. cv. Topas) MDEs: the identification of the best source of secondary embryos in the germinated MDEs and the increase in the production of secondary embryos (SEs). We performed a ploidy analysis of the different organs of MDEs-derived plantlets by flow cytometry. Our results showed that 60 % of the MDEs-derived plantlets were mixoploid, with 60 % of them having different ploidies for different organs. We concluded that hypocotyl-derived SEs present in general higher levels of genome duplication, which makes them a source of SEs better than cotyledons in terms of genetic stability and avoidance of hemizygosis. In order to increase production of SEs, we used plant-derived aqueous smoke extracts. The aim was to verify whether these extracts have a positive effect on secondary embryogenesis and if so, to identify the most efficient conditions of use. We tested smoke extracts at different incubation times, concentrations and methods of application to MDEs. The use of smoke extract, either prior to or during germination of MDEs, markedly enhances secondary embryogenesis. The best results were obtained with the use of smoke extract as a pretreatment, incubating MDEs for no longer than 15 min with a 1:250 extract concentration. © 2012 Springer Science+Business Media B.V. es_ES
dc.description.sponsorship This work was partially supported by a grant from Spanish MICINN AGL2010-17895 to J. M. Segui-Simarro. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Plant Cell, Tissue and Organ Culture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Androgenesis es_ES
dc.subject Germination es_ES
dc.subject Microspore-derived embryo es_ES
dc.subject Ploidy es_ES
dc.subject Rapeseed es_ES
dc.subject Smoke extract es_ES
dc.subject Cultivation es_ES
dc.subject Flow cytometry es_ES
dc.subject Oilseeds es_ES
dc.subject Smoke es_ES
dc.subject Plant extracts es_ES
dc.subject Brassica napus es_ES
dc.subject.classification GENETICA es_ES
dc.title Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl-derived embryos and using plant-derived smoke extract in culture medium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11240-012-0152-7
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Abdollahi, M.; Ghazanfari, P.; Corral Martínez, P.; Moieni, A.; Seguí-Simarro, JM. (2012). Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl-derived embryos and using plant-derived smoke extract in culture medium. Plant Cell, Tissue and Organ Culture. 110(2):307-315. https://doi.org/10.1007/s11240-012-0152-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11240-012-0152-7 es_ES
dc.description.upvformatpinicio 307 es_ES
dc.description.upvformatpfin 315 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 223183 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abdollahi M, Moieni A, Salmanian A, Mousavi A (2009) Secondary embryogenesis and transient expression of the β-glucuronidase gene in hypocotyls of rapeseed microspore-derived embryos. Biol Plant 53:573–577 es_ES
dc.description.references Abdollahi M, Moieni A, Mousavi A, Salmanian A (2011a) High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos. Mol Biol Rep 38:711–719 es_ES
dc.description.references Abdollahi MR, Mehrshad B, Moosavi SS (2011b) Effect of method of seed treatment with plant derived smoke solutions on germination and seedling growth of milk thistle (Silybum marianum L.). Seed Sci Technol 39:225–229 es_ES
dc.description.references Baxter BJM, Van Staden J, Granger JE, Brown NAC (1994) Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environ Exp Bot 34:217–223 es_ES
dc.description.references Bhowmik P, Dirpaul J, Polowick P, Ferrie A (2011) A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell Tiss Organ Cult 106:359–362 es_ES
dc.description.references Chen JL, Beversdorf WD (1994) A combined use of micro projectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L). Theor Appl Genet 88:187–192 es_ES
dc.description.references Corral-Martínez P, Nuez F, Seguí-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers. Euphytica 178:215–228 es_ES
dc.description.references Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373 es_ES
dc.description.references Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424 es_ES
dc.description.references Eudes F, Acharya S, Laroche A, Selinger LB, Cheng KJ (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tiss Organ Cult 73:147–157 es_ES
dc.description.references Ferrie A, Caswell K (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Organ Cult 104:301–309 es_ES
dc.description.references Ferrie A, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Organ Cult 104:375–386 es_ES
dc.description.references Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977 es_ES
dc.description.references Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2005) Synthesis of the seed germination stimulant 3-methyl-2H-furo [2,3-c] pyran-2-one. Tetrahedron Lett 46:5719–5721 es_ES
dc.description.references Flematti GR, Goddard-Borger ED, Merritt DJ, Ghisalberti EL, Dixon KW, Trengove RD (2007) Preparation of 2H-furo [2,3-c] pyran-2-one derivatives and evaluation of their germination-promoting activity. J Agric Food Chem 55:2189–2194 es_ES
dc.description.references Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151 es_ES
dc.description.references Karami O, Deljou A, Kordestani G (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tiss Organ Cult 92:273–280 es_ES
dc.description.references Keeley JE (1993) Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S Afr J Bot 59:638 es_ES
dc.description.references Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434 es_ES
dc.description.references Light ME, Gardner MJ, Jäger AK, van Staden J (2002) Dual regulation of seed germination by smoke solutions. Plant Growth Regul 37:135–141 es_ES
dc.description.references Light ME, Daws MI, Van Staden J (2009) Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot 75:1–7 es_ES
dc.description.references Ma G-H, Bunn E, Dixon K, Flematti GR (2006) Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2H-furo [2,3-C] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In Vitro Cell Dev Biol Plant 42:305–308 es_ES
dc.description.references Macdonald MV, Newsholme DM, Ingram DS (1988) The biological effects of gamma irradiation on secondary embryoids of Brassica napus ssp. oleifera (Metzg.) Sinsk., winter oilseed rape. New Phytol 110:255–260 es_ES
dc.description.references Malabadi RB, Nataraja K (2007) Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana A. B. Jacks. J Plant Sci 2:45–53 es_ES
dc.description.references Merkle SA, Parrott WA, Williams EG (1990) Applications of somatic embryogenesis and embryo cloning. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier, Amsterdam, pp 67–101 es_ES
dc.description.references Nehlin L, Mollers C, Glimelius K (1995) Induction of secondary embryogenesis in microspore-derived embryos of Brassica napus L. Plant Sci 111:219–227 es_ES
dc.description.references Paunescu A (2008) Histological investigation of the secondary somatic embryogenesis of Alyssum borzaeanum (Brassicaceae). Phytol Balcanica 14:111–117 es_ES
dc.description.references Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107 es_ES
dc.description.references Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274 es_ES
dc.description.references Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404 es_ES
dc.description.references Seguí-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120:358–369 es_ES
dc.description.references Senaratna T, Dixon K, Bunn E, Touchell D (1999) Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regul 28:95–99 es_ES
dc.description.references Taylor JLS, Van Staden J (1996) Root initiation in Vigna radiata (L.) Wilczek hypocotyl cuttings is stimulated by smoke-derived extracts. Plant Growth Regul 18:165–168 es_ES
dc.description.references Taylor JLS, van Staden J (1998) Plant-derived smoke solutions stimulate the growth of Lycopersicon esculentum roots in vitro. Plant Growth Regul 26:77–83 es_ES
dc.description.references Van Staden J, Jäger AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654–659 es_ES
dc.description.references Yadollahi A, Abdollahi M, Moieni A, Danaee M (2011) Effects of carbon source, polyethylene glycol and abscisic acid on secondary embryo induction and maturation in rapeseed (Brassica napus L.) microspore-derived embryos. Acta Physiol Plant 33:1905–1912 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem