- -

On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone array

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone array

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belloch Rodríguez, José Antonio es_ES
dc.contributor.author Gonzalez, Alberto es_ES
dc.contributor.author Vidal Maciá, Antonio Manuel es_ES
dc.contributor.author Cobos Serrano, Máximo es_ES
dc.date.accessioned 2016-07-19T08:19:07Z
dc.date.available 2016-07-19T08:19:07Z
dc.date.issued 2015-08-01
dc.identifier.issn 0957-4174
dc.identifier.uri http://hdl.handle.net/10251/67791
dc.description.abstract Sound source localization is an important topic in expert systems involving microphone arrays, such as automatic camera steering systems, human-machine interaction, video gaming or audio surveillance. The Steered Response Power with Phase Transform (SRP-PHAT) algorithm is a well-known approach for sound source localization due to its robust performance in noisy and reverberant environments. This algorithm analyzes the sound power captured by an acoustic beamformer on a defined spatial grid, estimating the source location as the point that maximizes the output power. Since localization accuracy can be improved by using high-resolution spatial grids and a high number of microphones, accurate acoustic localization systems require high computational power. Graphics Processing Units (GPUs) are highly parallel programmable co-processors that provide massive computation when the needed operations are properly parallelized. Emerging GPUs offer multiple parallelism levels; however, properly managing their computational resources becomes a very challenging task. In fact, management issues become even more difficult when multiple GPUs are involved, adding one more level of parallelism. In this paper, the performance of an acoustic source localization system using distributed microphones is analyzed over a massive multichannel processing framework in a multi-GPU system. The paper evaluates and points out the influence that the number of microphones and the available computational resources have in the overall system performance. Several acoustic environments are considered to show the impact that noise and reverberation have in the localization accuracy and how the use of massive microphone systems combined with parallelized GPU algorithms can help to mitigate substantially adverse acoustic effects. In this context, the proposed implementation is able to work in real time with high-resolution spatial grids and using up to 48 microphones. These results confirm the advantages of suitable GPU architectures in the development of real-time massive acoustic signal processing systems. es_ES
dc.description.sponsorship This work has been partially funded by the Spanish Ministerio de Economia y Competitividad (TEC2009-13741, TEC2012-38142-C04-01, and TEC2012-37945-C02-02), Generalitat Valenciana PROMETEO 2009/2013, and Universitat Politecnica de Valencia through Programa de Apoyo a la Investigacion y Desarrollo (PAID-05-11 and PAID-05-12). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Graphics Processing Units es_ES
dc.subject Microphone arrays es_ES
dc.subject Sound source localization es_ES
dc.subject Steered Response Power es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone array es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2015.02.056
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-13741/ES/Spatial Audio Systems Based On Massive Parallel Processing Of Multichannel Acoustic Signals With General Purpose-Graphics Processing Units (Gp-Gpu) And Multicores/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-37945-C02-02/ES/PROCESADO DE SONIDO PARA LA INTERACCION HOMBRE-MAQUINA: ENTORNOS MULTIFUENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Belloch Rodríguez, JA.; Gonzalez, A.; Vidal Maciá, AM.; Cobos Serrano, M. (2015). On the performance of multi-GPU-based expert systems for acoustic localization involving massive microphone array. Expert Systems with Applications. 42(13):5607-5620. https://doi.org/10.1016/j.eswa.2015.02.056 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.eswa.2015.02.056 es_ES
dc.description.upvformatpinicio 5607 es_ES
dc.description.upvformatpfin 5620 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 297053 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem