Mostrar el registro sencillo del ítem
dc.contributor.author | Alvarruiz Bermejo, Fernando | es_ES |
dc.contributor.author | Martínez Alzamora, Fernando | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.date.accessioned | 2016-07-21T12:04:37Z | |
dc.date.available | 2016-07-21T12:04:37Z | |
dc.date.issued | 2016-01-18 | |
dc.identifier.issn | 0920-8542 | |
dc.identifier.uri | http://hdl.handle.net/10251/67965 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-015-1607-5 | es_ES |
dc.description.abstract | Hydraulic solvers for the simulation of flows and pressures in water distribution systems (WDS) are used extensively, and their computational performance is key when considering optimization problems. This paper presents an approach to speedup the hydraulic solver using OpenMP with two efficient methods for WDS simulation. The paper identifies the different tasks carried out in the simulation, showing their contribution to the execution time, and selecting the target tasks for parallelization. After describing the algorithms for the selected tasks, parallel OpenMP versions are derived, with emphasis on the task of linear system update. Results are presented for four different large WDS models, showing considerable reduction in computing time | es_ES |
dc.description.sponsorship | This work has been partially supported by Ministerio de Economia y Competitividad from Spain, under the project TEC2012-38142-C04-01, and by project PROMETEO FASE II 2014/003 of Generalitat Valenciana. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Water distribution systems | es_ES |
dc.subject | Simulation | es_ES |
dc.subject | Epanet | es_ES |
dc.subject | Multicore | es_ES |
dc.subject | OpenMP | es_ES |
dc.subject | GGA | es_ES |
dc.subject | Loop method | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Improving the performance of water distribution systems’ simulation on multicore systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-015-1607-5 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Alvarruiz Bermejo, F.; Martínez Alzamora, F.; Vidal Maciá, AM. (2016). Improving the performance of water distribution systems’ simulation on multicore systems. Journal of Supercomputing. 1-13. https://doi.org/10.1007/s11227-015-1607-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s11227-015-1607-5 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 309793 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abraham E, Stoianov I (2015) Efficient preconditioned iterative methods for hydraulic simulation of large scale water distribution networks. Proc Eng 119:623–632 | es_ES |
dc.description.references | Abraham E, Stoianov I (2015) Sparse null space algorithms for hydraulic analysis of large-scale water supply networks. J Hydraul Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001089 | es_ES |
dc.description.references | Alonso JM, Alvarruiz F, Guerrero D et al (2000) Parallel computing in water network analysis and leakage minimization. J Water Resour Plan Manag 126(4):251–260 | es_ES |
dc.description.references | Alvarruiz F, Martínez-Alzamora F, Vidal AM (2015) Efficient simulation of water distribution systems using openmp. In: 15th International conference computational and mathematical methods in computational mathematics, science and engineering, pp 125–129 | es_ES |
dc.description.references | Alvarruiz F, Martínez-Alzamora F, Vidal AM (2015) Improving the efficiency of the loop method for the simulation of water distribution systems. J Water Resour Plan Manag 141(10):04015019 | es_ES |
dc.description.references | Burger G, Sitzenfrei R, Kleidorfer M, Rauch W (2015) Quest for a new solver for EPANET 2. J Water Resour Plan Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000596 | es_ES |
dc.description.references | Creaco E, Franchini M (2014) Comparison of Newton–Raphson global and loop algorithms for water distribution network resolution. J Hydraul Eng 140(3):313–321 | es_ES |
dc.description.references | Creaco E, Franchini M (2015) The identification of loops in water distribution networks. Proc Eng 119:506–515 Computing and Control for the Water Industry (CCWI2015) Sharing the best practice in water management | es_ES |
dc.description.references | Crous PA, van Zyl JE, Roodt Y (2012) The potential of graphical processing units to solve hydraulic network equations. J Hydroinf 14:603–612 | es_ES |
dc.description.references | Elhay S, Simpson A, Deuerlein J, Alexander B, Schilders W (2014) Reformulated co-tree flows method competitive with the global gradient algorithm for solving water distribution system equations. J Water Resour Plan Manag 140(12):04014040 | es_ES |
dc.description.references | Epp R, Fowler AG (1970) Efficient code for steady-state flows in networks. J Hydraul Div 96(1):43–56 | es_ES |
dc.description.references | Guidolin M, Burovskiy P, Kapelan Z, Savić D (2010) Cwsnet: an object-oriented toolkit for water distribution system simulations. In: Proceedings of 12th water distribution system analysis symposium, ASCE, Reston, VA | es_ES |
dc.description.references | Guidolin M, Kapelan Z, Savic D (2013) Using high performance techniques to accelerate demand-driven hydraulic solvers. J Hydroinf 15(1):38–54 | es_ES |
dc.description.references | Guidolin M, Kapelan Z, Savic D, Giustolisi O (2010) High performance hydraulic simulations with epanet on graphics processing units. In: Proceedings of 9th international conference on hydroinformatics | es_ES |
dc.description.references | Ostfeld A, Uber J, Salomons E et al (2008) The battle of the water sensor networks (BWSN): a design challenge for engineers and algorithms. J Water Resour Plan Manag 134(6):556–568 | es_ES |
dc.description.references | Rossman AL (2000) Epanet 2 users manual. Water Supply and Water Resources Division, US Environment Protection Agency | es_ES |
dc.description.references | Todini E, Pilati S (1988) Computer applications in water supply: vol. 1—systems analysis and simulation. In: Coulbeck B, Orr CH (eds) A gradient algorithm for the analysis of pipe networks. Research Studies Press Ltd, Letchworth, Hertfordshire, UK, pp 1–20 | es_ES |