- -

Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez-Sanchis, J. es_ES
dc.contributor.author Lorente, D. es_ES
dc.contributor.author Soria Olivas, Emilio es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Cubero, S. es_ES
dc.contributor.author Blasco, J. es_ES
dc.date.accessioned 2016-07-22T09:58:22Z
dc.date.available 2016-07-22T09:58:22Z
dc.date.issued 2013-04
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/68020
dc.description.abstract Hyperspectral systems are characterised by offering the possibility of acquiring a large number of images at different consecutive wavebands. To ensure reliable and repeatable results using this kind of optical sensors, the intensity shown by the objects in the different spectral images must be independent from the differences in sensitivity of the system for the different wavelengths. The spectral efficiency of the acquisition devices and the spectral emission of the lighting system vary across the spectrum and the images, and therefore the results can reproduce these variations if the system is not properly calibrated and corrected. This is particularly complex, when several LCTF devices are used to obtain large spectral ranges. This work presents the development of a hyperspectral system based on two liquid crystal tuneable filters for the acquisition of images of spherical fruits. It also proposes a methodology for acquiring and segmenting images of citrus fruits aimed at detecting decay in citrus fruits that has been capable of correctly classifying 98 % of pixels as rotten or non-rotten and 95 % of fruit. es_ES
dc.description.sponsorship This work has been partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) through research project RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds, the Universitat de Valencia through project UV-INV-AE11-41271, and the UPV-IVIA through collaboration agreement UPV-2013000005. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperspectral es_ES
dc.subject Citrus fruits es_ES
dc.subject Decay detection es_ES
dc.subject Fruit inspection es_ES
dc.subject Artificial neural networks es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-013-1158-9
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//UV-INV-AE11-41271/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//IVIA%2FUPV-2013000005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Gomez-Sanchis, J.; Lorente, D.; Soria Olivas, E.; Aleixos Borrás, MN.; Cubero, S.; Blasco, J. (2013). Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay. Food and Bioprocess Technology. 7(4):1047-1056. https://doi.org/10.1007/s11947-013-1158-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-013-1158-9 es_ES
dc.description.upvformatpinicio 1047 es_ES
dc.description.upvformatpfin 1056 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 246263 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137. es_ES
dc.description.references Ando, F. (1990). Multi-functional solid state imaging techniques. Journal of the Institute of Television Engineering, 44(2), 127–131. es_ES
dc.description.references Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103(2), 137–145. es_ES
dc.description.references Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504. es_ES
dc.description.references Eckert, J., & Eaks, I. (1989). Postharvest disorders and diseases of citrus. CA, USA: The citrus industry, University California Press. es_ES
dc.description.references ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colours using hyperspectral imaging. LWT- Food Science and Technology, 41(2), 337–345. es_ES
dc.description.references Erives, H., & Fitzgerald, G. J. (2005). Automated registration of hyperspectral images for precision agriculture. Computers and Electronics in Agriculture, 47(2), 103–119. es_ES
dc.description.references Geladi, P. L. M. (2007). Calibration standards and image calibration. In H. F. Grahn & P. Geladi (Eds.), Techniques and applications of hyperspectral image analysis, pp 203–220. Chichester, England: John Wiley & Sons. es_ES
dc.description.references Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesino-Herrero, C., Moltó, E., et al. (2008a). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86. es_ES
dc.description.references Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008b). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200. es_ES
dc.description.references Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785. es_ES
dc.description.references Hecht, E. (2003). Optics (4th ed.). Reading, USA: Addison Wesley. es_ES
dc.description.references Karoui, R., & Blecker, C. (2011). Fluorescence spectroscopy measurement for quality assessment of food systems—a review. Food and Bioprocess Technology, 4(3), 364–386. es_ES
dc.description.references Kim, D. G., Burks, T. F., Qin, J., & Bulanon, M. D. (2009). Classification of grapefruit peel diseases using colour texture feature analysis. International Journal of Agricultural and Biological Engineering, 2(3), 41–50. es_ES
dc.description.references Kokawa, M., Sugiyama, J., Tsuta, M., Yoshimura, M., Fujita, K., Shibata, M., Araki, T., & Nabetani, H. (2012). Development of a quantitative visualisation technique for gluten in dough using fluorescence fingerprint imaging. Food and Bioprocess Technology. DOI 10.1007/s1947-012-0982-7 (In press) es_ES
dc.description.references López-Álvarez, M., Hernández-Andrés, J., Romero, J., Campos, J., & Pons, A. (2009). Calibrating the elements of a multispectral imaging system. Journal of Imaging Science and Technology, 53(3), 31102-1-31102-10. es_ES
dc.description.references Lorente, D., Blasco, J., Serrano, A. J., Soria-Olivas, E., Aleixos, N., & Gómez-Sanchis, J. (2012b). Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food and Bioprocess Technology. DOI: 10.1007/s11947-012-0951-1 (In press). es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012b). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530–541. es_ES
dc.description.references Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2011). NIR Spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5(2), 425–424. es_ES
dc.description.references Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314. es_ES
dc.description.references Moltó, E., Blasco, J., & Gómez-Sanchis, J. (2010). Analysis of hyperspectral images of citrus fruits. In D.-W. Sun (Ed.), Hyperspectral Imaging for food quality analysis and control (pp. 321–348). San Diego, California, USA: Academic Press/Elsevier. es_ES
dc.description.references Palou, L., Smilanick, J. L., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Review, 4(2), 1–16. es_ES
dc.description.references Pang, Z., Laplante, N. E., & Filkins, R. J. (2012). Dark pixel intensity determination and its applications in normalising different exposure time and autofluorescence removal. Journal of Microscopy, 246(1), 1–10. es_ES
dc.description.references Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60. es_ES
dc.description.references Peng, Y., & Lu, R. (2006). An LCTF-based multispectral imaging system for estimation of apple fruit firmness; part I. acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267. es_ES
dc.description.references Qin, J., Burksa, T., Ritenourb, M., & Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93(2), 183–191. es_ES
dc.description.references Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93. es_ES
dc.description.references Sun, D.-W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. San Diego, California, USA: Academic Press/Elsevier. es_ES
dc.description.references Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. San Diego, California, USA: Academic Press/Elsevier. es_ES
dc.description.references Vadivambal, R., & Jayas, D. S. (2011). Applications of thermal imaging in agriculture and food industry—a review. Food and Bioprocess Technology, 4(2), 186–199. es_ES
dc.description.references Valencia-Chamorro, S. A., Palou, L., del Río, M. A., & Pérez-Gago, M. B. (2011). Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings with antifungal food additives during cold storage of ‘Clemenules’ mandarins. LWT- Food Science and Technology, 44(10), 2342–2348. es_ES
dc.description.references Vélez-Rivera, N., Blasco, J., Chanona-Pérez, J. J., Calderón-Domínguez, G., Perea-Flores, M. J., Arzate-Vázquez, I., Cubero, S., & Farrera-Rebollo, R. (2013). Computer vision system applied to classification of ‘Manila’ mangoes during ripening process. Food and Bioprocess Technology. DOI: 10.1007/s11947-013-1142-4 (In press). es_ES
dc.description.references Vidal, A., Talens, P., Prats-Montalbán, J. M., Cubero, S., Albert, F., & Blasco, J. (2012). In-line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology. DOI: 10.1007/s11947-012-1015-2 (In press). es_ES
dc.description.references Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2010). Analysis of acousto-optic tunable filter performance for imaging applications. Optical Engineering, 49(11), 113203. es_ES
dc.description.references Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2011). Design of a configurable multispectral imaging system based on an AOTF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 259–262. es_ES
dc.description.references Wang, W., Li, C., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2012). A liquid crystal tunable filter based shortwave infrared spectral imaging system: calibration and characterization. Computers and Electronics in Agriculture, 80, 145–154. es_ES
dc.description.references Wu, D., Wang, S., Wang, N., Nie, P., He, Y., Sun, D. -W., & Yao, J. (2012). Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food and Bioprocess Technology. DOI 10.1007/s11947-012-0928-0 (In press). es_ES
dc.description.references Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. -W. (2012). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food and Bioprocess Technology. DOI 10.1007/s11947-012-0825-6 (In press). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem