Mostrar el registro sencillo del ítem
dc.contributor.author | Perez-Cañamas, M | es_ES |
dc.contributor.author | Hernandez Fort, Carmen | es_ES |
dc.date.accessioned | 2016-07-25T11:36:21Z | |
dc.date.available | 2016-07-25T11:36:21Z | |
dc.date.issued | 2015-01-30 | |
dc.identifier.issn | 0021-9258 | |
dc.identifier.uri | http://hdl.handle.net/10251/68095 | |
dc.description.abstract | Background: GW/WG motif-containing viral suppressors of RNA silencing (VSRs) have been proposed to act through interaction with Argonaute (AGO) proteins. Results: The activity of a GW motif-containing VSR was found to rely on small RNA binding capability rather than on AGO interaction. Conclusion: Overlapping signals in VSRs may lead to misinterpretation of relevant molecular traits. Significance: Knowing primary target(s) of VSRs is critical for better understanding of the host-virus arms race. Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. | es_ES |
dc.description.sponsorship | This work was supported by Grant BFU2012-36095 from the Ministerio de Economia y Competitividad (MINECO, Spain) ( to C. H.). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Biochemistry and Molecular Biology | es_ES |
dc.relation.ispartof | Journal of Biological Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Argonaute | es_ES |
dc.subject | Host-Pathogen Interaction | es_ES |
dc.subject | Nucleolus | es_ES |
dc.subject | Plant Virus | es_ES |
dc.subject | RNA Virus | es_ES |
dc.subject | GW | es_ES |
dc.subject | WG Motifs | es_ES |
dc.subject | Pelargonium Line Pattern Virus | es_ES |
dc.subject | Coat Protein | es_ES |
dc.subject | sRNA Binding | es_ES |
dc.subject | Viral Suppressor of RNA Silencing | es_ES |
dc.title | Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1074/jbc.M114.593707 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-36095/ES/ANALISIS DE UNA RELACION COMENSALISTA VIRUS-PLANTA: ESTUDIO DE DETERMINANTES DE ACUMULACION VIRAL Y DE POSIBLES ALTERACIONES EPIGENETICAS EN EL GENOMA DEL HUESPED/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Perez-Cañamas, M.; Hernandez Fort, C. (2015). Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor. Journal of Biological Chemistry. 290(5):3106-3120. https://doi.org/10.1074/jbc.M114.593707 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1074/jbc.M114.593707 | es_ES |
dc.description.upvformatpinicio | 3106 | es_ES |
dc.description.upvformatpfin | 3120 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 290 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 305708 | es_ES |
dc.identifier.pmcid | PMC4317005 | en_EN |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30(6), 290-293. doi:10.1016/j.tibs.2005.04.012 | es_ES |
dc.description.references | Pickford, A. S., & Cogoni, C. (2003). RNA-mediated gene silencing. Cellular and Molecular Life Sciences, 60(5), 871-882. doi:10.1007/s00018-003-2245-2 | es_ES |
dc.description.references | Bivalkar-Mehla, S., Vakharia, J., Mehla, R., Abreha, M., Kanwar, J. R., Tikoo, A., & Chauhan, A. (2011). Viral RNA silencing suppressors (RSS): Novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Research, 155(1), 1-9. doi:10.1016/j.virusres.2010.10.003 | es_ES |
dc.description.references | Ding, S.-W., & Voinnet, O. (2007). Antiviral Immunity Directed by Small RNAs. Cell, 130(3), 413-426. doi:10.1016/j.cell.2007.07.039 | es_ES |
dc.description.references | Lu, R., Maduro, M., Li, F., Li, H. W., Broitman-Maduro, G., Li, W. X., & Ding, S. W. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature, 436(7053), 1040-1043. doi:10.1038/nature03870 | es_ES |
dc.description.references | Segers, G. C., Zhang, X., Deng, F., Sun, Q., & Nuss, D. L. (2007). Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proceedings of the National Academy of Sciences, 104(31), 12902-12906. doi:10.1073/pnas.0702500104 | es_ES |
dc.description.references | Wang, X.-H., Aliyari, R., Li, W.-X., Li, H.-W., Kim, K., Carthew, R., … Ding, S.-W. (2006). RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science, 312(5772), 452-454. doi:10.1126/science.1125694 | es_ES |
dc.description.references | Wu, Q., Wang, X., & Ding, S.-W. (2010). Viral Suppressors of RNA-Based Viral Immunity: Host Targets. Cell Host & Microbe, 8(1), 12-15. doi:10.1016/j.chom.2010.06.009 | es_ES |
dc.description.references | Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824 | es_ES |
dc.description.references | Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102 | es_ES |
dc.description.references | Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014 | es_ES |
dc.description.references | Vaucheret, H. (2008). Plant ARGONAUTES. Trends in Plant Science, 13(7), 350-358. doi:10.1016/j.tplants.2008.04.007 | es_ES |
dc.description.references | Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10(2), 94-108. doi:10.1038/nrg2504 | es_ES |
dc.description.references | Lipardi, C., Wei, Q., & Paterson, B. M. (2001). RNAi as Random Degradative PCR. Cell, 107(3), 297-307. doi:10.1016/s0092-8674(01)00537-2 | es_ES |
dc.description.references | Moissiard, G., Parizotto, E. A., Himber, C., & Voinnet, O. (2007). Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA, 13(8), 1268-1278. doi:10.1261/rna.541307 | es_ES |
dc.description.references | Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., & Voinnet, O. (2006). Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 313(5783), 68-71. doi:10.1126/science.1128214 | es_ES |
dc.description.references | Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection. The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 | es_ES |
dc.description.references | Harvey, J. J. W., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 6(1), e14639. doi:10.1371/journal.pone.0014639 | es_ES |
dc.description.references | Jaubert, M., Bhattacharjee, S., Mello, A. F. S., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 Mediates RNA-Silencing Antiviral Defenses against Potato virus X in Arabidopsis. Plant Physiology, 156(3), 1556-1564. doi:10.1104/pp.111.178012 | es_ES |
dc.description.references | Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105 | es_ES |
dc.description.references | Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., … Moffett, P. (2011). Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana. Plant Physiology, 156(3), 1548-1555. doi:10.1104/pp.111.178764 | es_ES |
dc.description.references | Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X., … Ding, S.-W. (2011). The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana. The Plant Cell, 23(4), 1625-1638. doi:10.1105/tpc.110.082305 | es_ES |
dc.description.references | Li, F., & Ding, S.-W. (2006). Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annual Review of Microbiology, 60(1), 503-531. doi:10.1146/annurev.micro.60.080805.142205 | es_ES |
dc.description.references | Alvarado, V., & Scholthof, H. B. (2009). Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Seminars in Cell & Developmental Biology, 20(9), 1032-1040. doi:10.1016/j.semcdb.2009.06.001 | es_ES |
dc.description.references | Qu, F., & Morris, T. J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letters, 579(26), 5958-5964. doi:10.1016/j.febslet.2005.08.041 | es_ES |
dc.description.references | Mangwende, T., Wang, M.-L., Borth, W., Hu, J., Moore, P. H., Mirkov, T. E., & Albert, H. H. (2009). The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology, 384(1), 38-50. doi:10.1016/j.virol.2008.10.034 | es_ES |
dc.description.references | Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0 | es_ES |
dc.description.references | Senshu, H., Ozeki, J., Komatsu, K., Hashimoto, M., Hatada, K., Aoyama, M., … Namba, S. (2009). Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. Journal of General Virology, 90(4), 1014-1024. doi:10.1099/vir.0.008243-0 | es_ES |
dc.description.references | Cuellar, W. J., Tairo, F., Kreuze, J. F., & Valkonen, J. P. T. (2008). Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. Journal of General Virology, 89(2), 573-582. doi:10.1099/vir.0.83471-0 | es_ES |
dc.description.references | Marques, N. T., Costa, Â. A., Lopes, D., Silva, G., & Nolasco, G. (2012). Comparing p20’s RNA silencing suppressing activity among five phylogenetic groups of Citrus Tristeza virus. European Journal of Plant Pathology, 133(1), 229-235. doi:10.1007/s10658-011-9877-0 | es_ES |
dc.description.references | Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010 | es_ES |
dc.description.references | Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120 | es_ES |
dc.description.references | Vargason, J. M., Szittya, G., Burgyán, J., & Hall, T. M. T. (2003). Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 115(7), 799-811. doi:10.1016/s0092-8674(03)00984-x | es_ES |
dc.description.references | Ye, K., Malinina, L., & Patel, D. J. (2003). Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature, 426(6968), 874-878. doi:10.1038/nature02213 | es_ES |
dc.description.references | Csorba, T., Bovi, A., Dalmay, T., & Burgyan, J. (2007). The p122 Subunit of Tobacco Mosaic Virus Replicase Is a Potent Silencing Suppressor and Compromises both Small Interfering RNA- and MicroRNA-Mediated Pathways. Journal of Virology, 81(21), 11768-11780. doi:10.1128/jvi.01230-07 | es_ES |
dc.description.references | Hemmes, H., Lakatos, L., Goldbach, R., Burgyan, J., & Prins, M. (2007). The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA, 13(7), 1079-1089. doi:10.1261/rna.444007 | es_ES |
dc.description.references | Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y.-P., … Burgyán, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. The EMBO Journal, 25(12), 2768-2780. doi:10.1038/sj.emboj.7601164 | es_ES |
dc.description.references | Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-Stranded RNA Binding May Be a General Plant RNA Viral Strategy To Suppress RNA Silencing. Journal of Virology, 80(12), 5747-5756. doi:10.1128/jvi.01963-05 | es_ES |
dc.description.references | Chao, J. A., Lee, J. H., Chapados, B. R., Debler, E. W., Schneemann, A., & Williamson, J. R. (2005). Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Structural & Molecular Biology, 12(11), 952-957. doi:10.1038/nsmb1005 | es_ES |
dc.description.references | Merai, Z., Kerenyi, Z., Molnar, A., Barta, E., Valoczi, A., Bisztray, G., … Silhavy, D. (2005). Aureusvirus P14 Is an Efficient RNA Silencing Suppressor That Binds Double-Stranded RNAs without Size Specificity. Journal of Virology, 79(11), 7217-7226. doi:10.1128/jvi.79.11.7217-7226.2005 | es_ES |
dc.description.references | Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., … Voinnet, O. (2008). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. The EMBO Journal, 27(15), 2102-2112. doi:10.1038/emboj.2008.129 | es_ES |
dc.description.references | Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J., & Chua, N.-H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20(23), 3255-3268. doi:10.1101/gad.1495506 | es_ES |
dc.description.references | Baumberger, N., Tsai, C.-H., Lie, M., Havecker, E., & Baulcombe, D. C. (2007). The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation. Current Biology, 17(18), 1609-1614. doi:10.1016/j.cub.2007.08.039 | es_ES |
dc.description.references | Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Current Biology, 17(18), 1615-1621. doi:10.1016/j.cub.2007.07.061 | es_ES |
dc.description.references | Csorba, T., Lózsa, R., Hutvágner, G., & Burgyán, J. (2010). Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. The Plant Journal, 62(3), 463-472. doi:10.1111/j.1365-313x.2010.04163.x | es_ES |
dc.description.references | Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., … Voinnet, O. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes & Development, 24(9), 904-915. doi:10.1101/gad.1908710 | es_ES |
dc.description.references | Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996 | es_ES |
dc.description.references | El-Shami, M., Pontier, D., Lahmy, S., Braun, L., Picart, C., Vega, D., … Lagrange, T. (2007). Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes & Development, 21(20), 2539-2544. doi:10.1101/gad.451207 | es_ES |
dc.description.references | Rochon D. Lommel S. Martelli G. P. Rubino L. Russo M. (2012) Family Tombusvirdae . in Ninth Report of the International Committee on Taxonomy of Viruses, pp. 1111–1138, Elsevier Academic Press, San Diego, CA | es_ES |
dc.description.references | Casta�o, A., & Hern�ndez, C. (2005). Complete nucleotide sequence and genome organization of Pelargonium line pattern virus and its relationship with the family Tombusviridae. Archives of Virology, 150(5), 949-965. doi:10.1007/s00705-004-0464-y | es_ES |
dc.description.references | Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017 | es_ES |
dc.description.references | Kinard, G., & Jordan, R. (2002). GENOME ORGANIZATION OF PELARGONIUM CHLOROTIC RING PATTERN VIRUS: FURTHER IMPLICATIONS FOR TOMBUSVIRIDAE TAXONOMY. Acta Horticulturae, (568), 17-27. doi:10.17660/actahortic.2002.568.1 | es_ES |
dc.description.references | Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003 | es_ES |
dc.description.references | Meng, C. (2006). Host-induced avirulence of hibiscus chlorotic ringspot virus mutants correlates with reduced gene-silencing suppression activity. Journal of General Virology, 87(2), 451-459. doi:10.1099/vir.0.81578-0 | es_ES |
dc.description.references | Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147 | es_ES |
dc.description.references | Takeda, A., Tsukuda, M., Mizumoto, H., Okamoto, K., Kaido, M., Mise, K., & Okuno, T. (2005). A plant RNA virus suppresses RNA silencing through viral RNA replication. The EMBO Journal, 24(17), 3147-3157. doi:10.1038/sj.emboj.7600776 | es_ES |
dc.description.references | Powers, J. G., Sit, T. L., Heinsohn, C., George, C. G., Kim, K.-H., & Lommel, S. A. (2008). The Red clover necrotic mosaic virus RNA-2 encoded movement protein is a second suppressor of RNA silencing. Virology, 381(2), 277-286. doi:10.1016/j.virol.2008.09.004 | es_ES |
dc.description.references | Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933 | es_ES |
dc.description.references | Sambrock J. Fritsch E. F. Maniatis T. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY | es_ES |
dc.description.references | Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879 | es_ES |
dc.description.references | González, I., Martínez, L., Rakitina, D. V., Lewsey, M. G., Atencio, F. A., Llave, C., … Canto, T. (2010). Cucumber Mosaic Virus 2b Protein Subcellular Targets and Interactions: Their Significance to RNA Silencing Suppressor Activity. Molecular Plant-Microbe Interactions, 23(3), 294-303. doi:10.1094/mpmi-23-3-0294 | es_ES |
dc.description.references | Kim, S. H., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., … Taliansky, M. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences, 104(26), 11115-11120. doi:10.1073/pnas.0704632104 | es_ES |
dc.description.references | Verwoerd, T. C., Dekker, B. M. M., & Hoekema, A. (1989). A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Research, 17(6), 2362-2362. doi:10.1093/nar/17.6.2362 | es_ES |
dc.description.references | Ivars, P., Alonso, M., Borja, M., & Hernández, C. (2004). Development of a Non-radioactive Dot-blot Hybridisation Assay for the Detection of Pelargonium Flower Break Virus and Pelargonium line Pattern Virus. European Journal of Plant Pathology, 110(3), 275-283. doi:10.1023/b:ejpp.0000019798.87567.22 | es_ES |
dc.description.references | Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001 | es_ES |
dc.description.references | Johansen, L. K., & Carrington, J. C. (2001). Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System. Plant Physiology, 126(3), 930-938. doi:10.1104/pp.126.3.930 | es_ES |
dc.description.references | Chen, H.-Y., Yang, J., Lin, C., & Yuan, Y. A. (2008). Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO reports, 9(8), 754-760. doi:10.1038/embor.2008.118 | es_ES |
dc.description.references | Vaewhongs, A. A., & Lommel, S. A. (1995). Virion Formation Is Required for the Long-Distance Movement of Red Clover Necrotic Mosaic Virus in Movement Protein Transgenic Plants. Virology, 212(2), 607-613. doi:10.1006/viro.1995.1518 | es_ES |
dc.description.references | Cao, M., Ye, X., Willie, K., Lin, J., Zhang, X., Redinbaugh, M. G., … Qu, F. (2010). The Capsid Protein of Turnip Crinkle Virus Overcomes Two Separate Defense Barriers To Facilitate Systemic Movement of the Virus in Arabidopsis. Journal of Virology, 84(15), 7793-7802. doi:10.1128/jvi.02643-09 | es_ES |
dc.description.references | Valli, A., Dujovny, G., & Garcia, J. A. (2007). Protease Activity, Self Interaction, and Small Interfering RNA Binding of the Silencing Suppressor P1b from Cucumber Vein Yellowing Ipomovirus. Journal of Virology, 82(2), 974-986. doi:10.1128/jvi.01664-07 | es_ES |
dc.description.references | Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3 | es_ES |
dc.description.references | Lucy, A. P. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. The EMBO Journal, 19(7), 1672-1680. doi:10.1093/emboj/19.7.1672 | es_ES |
dc.description.references | Wang, Y. (2004). Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 85(10), 3135-3147. doi:10.1099/vir.0.80250-0 | es_ES |
dc.description.references | Xu, A., Zhao, Z., Chen, W., Zhang, H., Liao, Q., Chen, J., … Du, Z. (2013). Self-interaction of the cucumber mosaic virus 2b protein plays a vital role in the suppression of RNA silencing and the induction of viral symptoms. Molecular Plant Pathology, 14(8), 803-812. doi:10.1111/mpp.12051 | es_ES |
dc.description.references | Hamera, S., Song, X., Su, L., Chen, X., & Fang, R. (2011). Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. The Plant Journal, 69(1), 104-115. doi:10.1111/j.1365-313x.2011.04774.x | es_ES |
dc.description.references | Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1 | es_ES |
dc.description.references | Gonzalez, I., Rakitina, D., Semashko, M., Taliansky, M., Praveen, S., Palukaitis, P., … Canto, T. (2012). RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA, 18(4), 771-782. doi:10.1261/rna.031260.111 | es_ES |
dc.description.references | Chiba, S., Hleibieh, K., Delbianco, A., Klein, E., Ratti, C., Ziegler-Graff, V., … Gilmer, D. (2013). The Benyvirus RNA Silencing Suppressor Is Essential for Long-Distance Movement, Requires Both Zinc-Finger and NoLS Basic Residues but Not a Nucleolar Localization for Its Silencing-Suppression Activity. Molecular Plant-Microbe Interactions, 26(2), 168-181. doi:10.1094/mpmi-06-12-0142-r | es_ES |
dc.description.references | Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., … Flores, R. (2013). Citrus tristeza virus p23: Determinants for Nucleolar Localization and Their Influence on Suppression of RNA Silencing and Pathogenesis. Molecular Plant-Microbe Interactions, 26(3), 306-318. doi:10.1094/mpmi-08-12-0201-r | es_ES |
dc.description.references | BRAGG, J. N., & JACKSON, A. O. (2004). The C-terminal region of the Barley stripe mosaic virusgammab protein participates in homologous interactions and is required for suppression of RNA silencing. Molecular Plant Pathology, 5(5), 465-481. doi:10.1111/j.1364-3703.2004.00246.x | es_ES |
dc.description.references | Duan, C.-G., Fang, Y.-Y., Zhou, B.-J., Zhao, J.-H., Hou, W.-N., Zhu, H., … Guo, H.-S. (2012). Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein. The Plant Cell, 24(1), 259-274. doi:10.1105/tpc.111.092718 | es_ES |
dc.description.references | Vogler, H., Akbergenov, R., Shivaprasad, P. V., Dang, V., Fasler, M., Kwon, M.-O., … Heinlein, M. (2007). Modification of Small RNAs Associated with Suppression of RNA Silencing by Tobamovirus Replicase Protein. Journal of Virology, 81(19), 10379-10388. doi:10.1128/jvi.00727-07 | es_ES |
dc.description.references | Endres, M. W., Gregory, B. D., Gao, Z., Foreman, A. W., Mlotshwa, S., Ge, X., … Vance, V. (2010). Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing. PLoS Pathogens, 6(1), e1000729. doi:10.1371/journal.ppat.1000729 | es_ES |
dc.description.references | Dalmay, T. (1992). Replication and Movement of a Coat Protein Mutant of Cymbidium Ringspot Tombusvirus. Molecular Plant-Microbe Interactions, 5(5), 379. doi:10.1094/mpmi-5-379 | es_ES |
dc.description.references | Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-t | es_ES |
dc.description.references | Moln√°r, A., Burgy√°n, J., Havelda, Z., Dalmay, T., & Szutorisz, H. (1997). Complete nucleotide sequence of tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. Journal of General Virology, 78(6), 1235-1239. doi:10.1099/0022-1317-78-6-1235 | es_ES |
dc.description.references | Reade, R., Miller, J., Robbins, M., Xiang, Y., & Rochon, D. (2003). Molecular analysis of the cucumber leaf spot virus genome. Virus Research, 91(2), 171-179. doi:10.1016/s0168-1702(02)00251-4 | es_ES |
dc.description.references | Rubino, L., & Russo, M. (1997). Molecular analysis of the pothos latent virus genome. Journal of General Virology, 78(6), 1219-1226. doi:10.1099/0022-1317-78-6-1219 | es_ES |
dc.description.references | Sit, T. L., Johnston, J. C., Ter Borg, M. G., Frison, E., McLean, M. A., & Rochon, D. (1995). Mutational analysis of the cucumber necrosis virus coat protein gene. Virology, 206(1), 38-48. doi:10.1016/s0042-6822(95)80017-4 | es_ES |
dc.description.references | Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739 | es_ES |
dc.description.references | Jay, F., Wang, Y., Yu, A., Taconnat, L., Pelletier, S., Colot, V., … Voinnet, O. (2011). Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. PLoS Pathogens, 7(5), e1002035. doi:10.1371/journal.ppat.1002035 | es_ES |
dc.description.references | Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function. Developmental Cell, 4(2), 205-217. doi:10.1016/s1534-5807(03)00025-x | es_ES |
dc.description.references | Alonso, M., & Borja, M. (2005). High incidence of Pelargonium line pattern virus infecting asymptomatic Pelargonium spp. in Spain. European Journal of Plant Pathology, 112(2), 95-100. doi:10.1007/s10658-005-0803-1 | es_ES |