- -

Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Cañamas, M es_ES
dc.contributor.author Hernandez Fort, Carmen es_ES
dc.date.accessioned 2016-07-25T11:36:21Z
dc.date.available 2016-07-25T11:36:21Z
dc.date.issued 2015-01-30
dc.identifier.issn 0021-9258
dc.identifier.uri http://hdl.handle.net/10251/68095
dc.description.abstract Background: GW/WG motif-containing viral suppressors of RNA silencing (VSRs) have been proposed to act through interaction with Argonaute (AGO) proteins. Results: The activity of a GW motif-containing VSR was found to rely on small RNA binding capability rather than on AGO interaction. Conclusion: Overlapping signals in VSRs may lead to misinterpretation of relevant molecular traits. Significance: Knowing primary target(s) of VSRs is critical for better understanding of the host-virus arms race. Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. es_ES
dc.description.sponsorship This work was supported by Grant BFU2012-36095 from the Ministerio de Economia y Competitividad (MINECO, Spain) ( to C. H.). en_EN
dc.language Inglés es_ES
dc.publisher American Society for Biochemistry and Molecular Biology es_ES
dc.relation.ispartof Journal of Biological Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Argonaute es_ES
dc.subject Host-Pathogen Interaction es_ES
dc.subject Nucleolus es_ES
dc.subject Plant Virus es_ES
dc.subject RNA Virus es_ES
dc.subject GW es_ES
dc.subject WG Motifs es_ES
dc.subject Pelargonium Line Pattern Virus es_ES
dc.subject Coat Protein es_ES
dc.subject sRNA Binding es_ES
dc.subject Viral Suppressor of RNA Silencing es_ES
dc.title Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1074/jbc.M114.593707
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-36095/ES/ANALISIS DE UNA RELACION COMENSALISTA VIRUS-PLANTA: ESTUDIO DE DETERMINANTES DE ACUMULACION VIRAL Y DE POSIBLES ALTERACIONES EPIGENETICAS EN EL GENOMA DEL HUESPED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Perez-Cañamas, M.; Hernandez Fort, C. (2015). Key importance of small RNA binding for the activity of a GW motif-containing RNA silencing suppressor. Journal of Biological Chemistry. 290(5):3106-3120. https://doi.org/10.1074/jbc.M114.593707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1074/jbc.M114.593707 es_ES
dc.description.upvformatpinicio 3106 es_ES
dc.description.upvformatpfin 3120 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 290 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 305708 es_ES
dc.identifier.pmcid PMC4317005 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30(6), 290-293. doi:10.1016/j.tibs.2005.04.012 es_ES
dc.description.references Pickford, A. S., & Cogoni, C. (2003). RNA-mediated gene silencing. Cellular and Molecular Life Sciences, 60(5), 871-882. doi:10.1007/s00018-003-2245-2 es_ES
dc.description.references Bivalkar-Mehla, S., Vakharia, J., Mehla, R., Abreha, M., Kanwar, J. R., Tikoo, A., & Chauhan, A. (2011). Viral RNA silencing suppressors (RSS): Novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Research, 155(1), 1-9. doi:10.1016/j.virusres.2010.10.003 es_ES
dc.description.references Ding, S.-W., & Voinnet, O. (2007). Antiviral Immunity Directed by Small RNAs. Cell, 130(3), 413-426. doi:10.1016/j.cell.2007.07.039 es_ES
dc.description.references Lu, R., Maduro, M., Li, F., Li, H. W., Broitman-Maduro, G., Li, W. X., & Ding, S. W. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature, 436(7053), 1040-1043. doi:10.1038/nature03870 es_ES
dc.description.references Segers, G. C., Zhang, X., Deng, F., Sun, Q., & Nuss, D. L. (2007). Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proceedings of the National Academy of Sciences, 104(31), 12902-12906. doi:10.1073/pnas.0702500104 es_ES
dc.description.references Wang, X.-H., Aliyari, R., Li, W.-X., Li, H.-W., Kim, K., Carthew, R., … Ding, S.-W. (2006). RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science, 312(5772), 452-454. doi:10.1126/science.1125694 es_ES
dc.description.references Wu, Q., Wang, X., & Ding, S.-W. (2010). Viral Suppressors of RNA-Based Viral Immunity: Host Targets. Cell Host & Microbe, 8(1), 12-15. doi:10.1016/j.chom.2010.06.009 es_ES
dc.description.references Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824 es_ES
dc.description.references Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102 es_ES
dc.description.references Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014 es_ES
dc.description.references Vaucheret, H. (2008). Plant ARGONAUTES. Trends in Plant Science, 13(7), 350-358. doi:10.1016/j.tplants.2008.04.007 es_ES
dc.description.references Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10(2), 94-108. doi:10.1038/nrg2504 es_ES
dc.description.references Lipardi, C., Wei, Q., & Paterson, B. M. (2001). RNAi as Random Degradative PCR. Cell, 107(3), 297-307. doi:10.1016/s0092-8674(01)00537-2 es_ES
dc.description.references Moissiard, G., Parizotto, E. A., Himber, C., & Voinnet, O. (2007). Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA, 13(8), 1268-1278. doi:10.1261/rna.541307 es_ES
dc.description.references Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C., & Voinnet, O. (2006). Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science, 313(5783), 68-71. doi:10.1126/science.1128214 es_ES
dc.description.references Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection. The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 es_ES
dc.description.references Harvey, J. J. W., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 6(1), e14639. doi:10.1371/journal.pone.0014639 es_ES
dc.description.references Jaubert, M., Bhattacharjee, S., Mello, A. F. S., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 Mediates RNA-Silencing Antiviral Defenses against Potato virus X in Arabidopsis. Plant Physiology, 156(3), 1556-1564. doi:10.1104/pp.111.178012 es_ES
dc.description.references Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105 es_ES
dc.description.references Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., … Moffett, P. (2011). Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana. Plant Physiology, 156(3), 1548-1555. doi:10.1104/pp.111.178764 es_ES
dc.description.references Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X., … Ding, S.-W. (2011). The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana. The Plant Cell, 23(4), 1625-1638. doi:10.1105/tpc.110.082305 es_ES
dc.description.references Li, F., & Ding, S.-W. (2006). Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annual Review of Microbiology, 60(1), 503-531. doi:10.1146/annurev.micro.60.080805.142205 es_ES
dc.description.references Alvarado, V., & Scholthof, H. B. (2009). Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Seminars in Cell & Developmental Biology, 20(9), 1032-1040. doi:10.1016/j.semcdb.2009.06.001 es_ES
dc.description.references Qu, F., & Morris, T. J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letters, 579(26), 5958-5964. doi:10.1016/j.febslet.2005.08.041 es_ES
dc.description.references Mangwende, T., Wang, M.-L., Borth, W., Hu, J., Moore, P. H., Mirkov, T. E., & Albert, H. H. (2009). The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology, 384(1), 38-50. doi:10.1016/j.virol.2008.10.034 es_ES
dc.description.references Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0 es_ES
dc.description.references Senshu, H., Ozeki, J., Komatsu, K., Hashimoto, M., Hatada, K., Aoyama, M., … Namba, S. (2009). Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. Journal of General Virology, 90(4), 1014-1024. doi:10.1099/vir.0.008243-0 es_ES
dc.description.references Cuellar, W. J., Tairo, F., Kreuze, J. F., & Valkonen, J. P. T. (2008). Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. Journal of General Virology, 89(2), 573-582. doi:10.1099/vir.0.83471-0 es_ES
dc.description.references Marques, N. T., Costa, Â. A., Lopes, D., Silva, G., & Nolasco, G. (2012). Comparing p20’s RNA silencing suppressing activity among five phylogenetic groups of Citrus Tristeza virus. European Journal of Plant Pathology, 133(1), 229-235. doi:10.1007/s10658-011-9877-0 es_ES
dc.description.references Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010 es_ES
dc.description.references Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120 es_ES
dc.description.references Vargason, J. M., Szittya, G., Burgyán, J., & Hall, T. M. T. (2003). Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 115(7), 799-811. doi:10.1016/s0092-8674(03)00984-x es_ES
dc.description.references Ye, K., Malinina, L., & Patel, D. J. (2003). Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature, 426(6968), 874-878. doi:10.1038/nature02213 es_ES
dc.description.references Csorba, T., Bovi, A., Dalmay, T., & Burgyan, J. (2007). The p122 Subunit of Tobacco Mosaic Virus Replicase Is a Potent Silencing Suppressor and Compromises both Small Interfering RNA- and MicroRNA-Mediated Pathways. Journal of Virology, 81(21), 11768-11780. doi:10.1128/jvi.01230-07 es_ES
dc.description.references Hemmes, H., Lakatos, L., Goldbach, R., Burgyan, J., & Prins, M. (2007). The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA, 13(7), 1079-1089. doi:10.1261/rna.444007 es_ES
dc.description.references Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y.-P., … Burgyán, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. The EMBO Journal, 25(12), 2768-2780. doi:10.1038/sj.emboj.7601164 es_ES
dc.description.references Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-Stranded RNA Binding May Be a General Plant RNA Viral Strategy To Suppress RNA Silencing. Journal of Virology, 80(12), 5747-5756. doi:10.1128/jvi.01963-05 es_ES
dc.description.references Chao, J. A., Lee, J. H., Chapados, B. R., Debler, E. W., Schneemann, A., & Williamson, J. R. (2005). Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Structural & Molecular Biology, 12(11), 952-957. doi:10.1038/nsmb1005 es_ES
dc.description.references Merai, Z., Kerenyi, Z., Molnar, A., Barta, E., Valoczi, A., Bisztray, G., … Silhavy, D. (2005). Aureusvirus P14 Is an Efficient RNA Silencing Suppressor That Binds Double-Stranded RNAs without Size Specificity. Journal of Virology, 79(11), 7217-7226. doi:10.1128/jvi.79.11.7217-7226.2005 es_ES
dc.description.references Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., … Voinnet, O. (2008). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. The EMBO Journal, 27(15), 2102-2112. doi:10.1038/emboj.2008.129 es_ES
dc.description.references Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J., & Chua, N.-H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20(23), 3255-3268. doi:10.1101/gad.1495506 es_ES
dc.description.references Baumberger, N., Tsai, C.-H., Lie, M., Havecker, E., & Baulcombe, D. C. (2007). The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation. Current Biology, 17(18), 1609-1614. doi:10.1016/j.cub.2007.08.039 es_ES
dc.description.references Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Current Biology, 17(18), 1615-1621. doi:10.1016/j.cub.2007.07.061 es_ES
dc.description.references Csorba, T., Lózsa, R., Hutvágner, G., & Burgyán, J. (2010). Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. The Plant Journal, 62(3), 463-472. doi:10.1111/j.1365-313x.2010.04163.x es_ES
dc.description.references Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., … Voinnet, O. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes & Development, 24(9), 904-915. doi:10.1101/gad.1908710 es_ES
dc.description.references Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996 es_ES
dc.description.references El-Shami, M., Pontier, D., Lahmy, S., Braun, L., Picart, C., Vega, D., … Lagrange, T. (2007). Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes & Development, 21(20), 2539-2544. doi:10.1101/gad.451207 es_ES
dc.description.references Rochon D. Lommel S. Martelli G. P. Rubino L. Russo M. (2012) Family Tombusvirdae . in Ninth Report of the International Committee on Taxonomy of Viruses, pp. 1111–1138, Elsevier Academic Press, San Diego, CA es_ES
dc.description.references Casta�o, A., & Hern�ndez, C. (2005). Complete nucleotide sequence and genome organization of Pelargonium line pattern virus and its relationship with the family Tombusviridae. Archives of Virology, 150(5), 949-965. doi:10.1007/s00705-004-0464-y es_ES
dc.description.references Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017 es_ES
dc.description.references Kinard, G., & Jordan, R. (2002). GENOME ORGANIZATION OF PELARGONIUM CHLOROTIC RING PATTERN VIRUS: FURTHER IMPLICATIONS FOR TOMBUSVIRIDAE TAXONOMY. Acta Horticulturae, (568), 17-27. doi:10.17660/actahortic.2002.568.1 es_ES
dc.description.references Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003 es_ES
dc.description.references Meng, C. (2006). Host-induced avirulence of hibiscus chlorotic ringspot virus mutants correlates with reduced gene-silencing suppression activity. Journal of General Virology, 87(2), 451-459. doi:10.1099/vir.0.81578-0 es_ES
dc.description.references Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147 es_ES
dc.description.references Takeda, A., Tsukuda, M., Mizumoto, H., Okamoto, K., Kaido, M., Mise, K., & Okuno, T. (2005). A plant RNA virus suppresses RNA silencing through viral RNA replication. The EMBO Journal, 24(17), 3147-3157. doi:10.1038/sj.emboj.7600776 es_ES
dc.description.references Powers, J. G., Sit, T. L., Heinsohn, C., George, C. G., Kim, K.-H., & Lommel, S. A. (2008). The Red clover necrotic mosaic virus RNA-2 encoded movement protein is a second suppressor of RNA silencing. Virology, 381(2), 277-286. doi:10.1016/j.virol.2008.09.004 es_ES
dc.description.references Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933 es_ES
dc.description.references Sambrock J. Fritsch E. F. Maniatis T. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY es_ES
dc.description.references Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879 es_ES
dc.description.references González, I., Martínez, L., Rakitina, D. V., Lewsey, M. G., Atencio, F. A., Llave, C., … Canto, T. (2010). Cucumber Mosaic Virus 2b Protein Subcellular Targets and Interactions: Their Significance to RNA Silencing Suppressor Activity. Molecular Plant-Microbe Interactions, 23(3), 294-303. doi:10.1094/mpmi-23-3-0294 es_ES
dc.description.references Kim, S. H., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., … Taliansky, M. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences, 104(26), 11115-11120. doi:10.1073/pnas.0704632104 es_ES
dc.description.references Verwoerd, T. C., Dekker, B. M. M., & Hoekema, A. (1989). A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Research, 17(6), 2362-2362. doi:10.1093/nar/17.6.2362 es_ES
dc.description.references Ivars, P., Alonso, M., Borja, M., & Hernández, C. (2004). Development of a Non-radioactive Dot-blot Hybridisation Assay for the Detection of Pelargonium Flower Break Virus and Pelargonium line Pattern Virus. European Journal of Plant Pathology, 110(3), 275-283. doi:10.1023/b:ejpp.0000019798.87567.22 es_ES
dc.description.references Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001 es_ES
dc.description.references Johansen, L. K., & Carrington, J. C. (2001). Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System. Plant Physiology, 126(3), 930-938. doi:10.1104/pp.126.3.930 es_ES
dc.description.references Chen, H.-Y., Yang, J., Lin, C., & Yuan, Y. A. (2008). Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO reports, 9(8), 754-760. doi:10.1038/embor.2008.118 es_ES
dc.description.references Vaewhongs, A. A., & Lommel, S. A. (1995). Virion Formation Is Required for the Long-Distance Movement of Red Clover Necrotic Mosaic Virus in Movement Protein Transgenic Plants. Virology, 212(2), 607-613. doi:10.1006/viro.1995.1518 es_ES
dc.description.references Cao, M., Ye, X., Willie, K., Lin, J., Zhang, X., Redinbaugh, M. G., … Qu, F. (2010). The Capsid Protein of Turnip Crinkle Virus Overcomes Two Separate Defense Barriers To Facilitate Systemic Movement of the Virus in Arabidopsis. Journal of Virology, 84(15), 7793-7802. doi:10.1128/jvi.02643-09 es_ES
dc.description.references Valli, A., Dujovny, G., & Garcia, J. A. (2007). Protease Activity, Self Interaction, and Small Interfering RNA Binding of the Silencing Suppressor P1b from Cucumber Vein Yellowing Ipomovirus. Journal of Virology, 82(2), 974-986. doi:10.1128/jvi.01664-07 es_ES
dc.description.references Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3 es_ES
dc.description.references Lucy, A. P. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. The EMBO Journal, 19(7), 1672-1680. doi:10.1093/emboj/19.7.1672 es_ES
dc.description.references Wang, Y. (2004). Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 85(10), 3135-3147. doi:10.1099/vir.0.80250-0 es_ES
dc.description.references Xu, A., Zhao, Z., Chen, W., Zhang, H., Liao, Q., Chen, J., … Du, Z. (2013). Self-interaction of the cucumber mosaic virus 2b protein plays a vital role in the suppression of RNA silencing and the induction of viral symptoms. Molecular Plant Pathology, 14(8), 803-812. doi:10.1111/mpp.12051 es_ES
dc.description.references Hamera, S., Song, X., Su, L., Chen, X., & Fang, R. (2011). Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. The Plant Journal, 69(1), 104-115. doi:10.1111/j.1365-313x.2011.04774.x es_ES
dc.description.references Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1 es_ES
dc.description.references Gonzalez, I., Rakitina, D., Semashko, M., Taliansky, M., Praveen, S., Palukaitis, P., … Canto, T. (2012). RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA, 18(4), 771-782. doi:10.1261/rna.031260.111 es_ES
dc.description.references Chiba, S., Hleibieh, K., Delbianco, A., Klein, E., Ratti, C., Ziegler-Graff, V., … Gilmer, D. (2013). The Benyvirus RNA Silencing Suppressor Is Essential for Long-Distance Movement, Requires Both Zinc-Finger and NoLS Basic Residues but Not a Nucleolar Localization for Its Silencing-Suppression Activity. Molecular Plant-Microbe Interactions, 26(2), 168-181. doi:10.1094/mpmi-06-12-0142-r es_ES
dc.description.references Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., … Flores, R. (2013). Citrus tristeza virus p23: Determinants for Nucleolar Localization and Their Influence on Suppression of RNA Silencing and Pathogenesis. Molecular Plant-Microbe Interactions, 26(3), 306-318. doi:10.1094/mpmi-08-12-0201-r es_ES
dc.description.references BRAGG, J. N., & JACKSON, A. O. (2004). The C-terminal region of the Barley stripe mosaic virusgammab protein participates in homologous interactions and is required for suppression of RNA silencing. Molecular Plant Pathology, 5(5), 465-481. doi:10.1111/j.1364-3703.2004.00246.x es_ES
dc.description.references Duan, C.-G., Fang, Y.-Y., Zhou, B.-J., Zhao, J.-H., Hou, W.-N., Zhu, H., … Guo, H.-S. (2012). Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein. The Plant Cell, 24(1), 259-274. doi:10.1105/tpc.111.092718 es_ES
dc.description.references Vogler, H., Akbergenov, R., Shivaprasad, P. V., Dang, V., Fasler, M., Kwon, M.-O., … Heinlein, M. (2007). Modification of Small RNAs Associated with Suppression of RNA Silencing by Tobamovirus Replicase Protein. Journal of Virology, 81(19), 10379-10388. doi:10.1128/jvi.00727-07 es_ES
dc.description.references Endres, M. W., Gregory, B. D., Gao, Z., Foreman, A. W., Mlotshwa, S., Ge, X., … Vance, V. (2010). Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing. PLoS Pathogens, 6(1), e1000729. doi:10.1371/journal.ppat.1000729 es_ES
dc.description.references Dalmay, T. (1992). Replication and Movement of a Coat Protein Mutant of Cymbidium Ringspot Tombusvirus. Molecular Plant-Microbe Interactions, 5(5), 379. doi:10.1094/mpmi-5-379 es_ES
dc.description.references Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-t es_ES
dc.description.references Moln√°r, A., Burgy√°n, J., Havelda, Z., Dalmay, T., & Szutorisz, H. (1997). Complete nucleotide sequence of tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. Journal of General Virology, 78(6), 1235-1239. doi:10.1099/0022-1317-78-6-1235 es_ES
dc.description.references Reade, R., Miller, J., Robbins, M., Xiang, Y., & Rochon, D. (2003). Molecular analysis of the cucumber leaf spot virus genome. Virus Research, 91(2), 171-179. doi:10.1016/s0168-1702(02)00251-4 es_ES
dc.description.references Rubino, L., & Russo, M. (1997). Molecular analysis of the pothos latent virus genome. Journal of General Virology, 78(6), 1219-1226. doi:10.1099/0022-1317-78-6-1219 es_ES
dc.description.references Sit, T. L., Johnston, J. C., Ter Borg, M. G., Frison, E., McLean, M. A., & Rochon, D. (1995). Mutational analysis of the cucumber necrosis virus coat protein gene. Virology, 206(1), 38-48. doi:10.1016/s0042-6822(95)80017-4 es_ES
dc.description.references Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739 es_ES
dc.description.references Jay, F., Wang, Y., Yu, A., Taconnat, L., Pelletier, S., Colot, V., … Voinnet, O. (2011). Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. PLoS Pathogens, 7(5), e1002035. doi:10.1371/journal.ppat.1002035 es_ES
dc.description.references Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function. Developmental Cell, 4(2), 205-217. doi:10.1016/s1534-5807(03)00025-x es_ES
dc.description.references Alonso, M., & Borja, M. (2005). High incidence of Pelargonium line pattern virus infecting asymptomatic Pelargonium spp. in Spain. European Journal of Plant Pathology, 112(2), 95-100. doi:10.1007/s10658-005-0803-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem