- -

Influence of drying on the retention of olive leaf polyphenols infused into dried apple

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of drying on the retention of olive leaf polyphenols infused into dried apple

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ahmad-Qasem Mateo, Margarita Hussam es_ES
dc.contributor.author Santacatalina Bonet, Juan Vicente es_ES
dc.contributor.author Barrajón-Catalán, Enrique es_ES
dc.contributor.author Micol, Vicente es_ES
dc.contributor.author Cárcel Carrión, Juan Andrés es_ES
dc.contributor.author García Pérez, José Vicente es_ES
dc.date.accessioned 2016-07-26T07:12:14Z
dc.date.available 2016-07-26T07:12:14Z
dc.date.issued 2015-01
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/68172
dc.description.abstract [EN] Olive leaf extracts are rich in polyphenolic compounds. Their inclusion by impregnation in food solid matrices could improve the nutritional value and antioxidant capacity of dietary products, such as apple. Drying the food matrix is interesting not only because it speeds up the infusion but also because of its effect on the final stabilization of impregnated food. In this work, the influence of drying method on the retention of infused olive leaf polyphenols in a solid matrix (apple) was addressed. For this purpose, apple cubes (10 mm side) were initially dehydrated by freeze drying or hot air drying at 60 °C and then impregnated with the olive leaf extract. After the polyphenolic infusion, samples were dried for the final stabilization by means of three different methods: freeze drying and hot air drying at 60 °C both with and without ultrasound application. The retention of infused polyphenols in apple samples was evaluated by determining the total phenolic content and antioxidant capacity and quantifying the main olive leaf polyphenols by HPLC-DAD/MS MS. The drying kinetics and the loss of apple solids during impregnation were modeled by using diffusion equations and the Weibull model, respectively. The role of fresh apple drying on the retention of infused olive leaf polyphenols was more significant than the further drying of the impregnated apple. Thus, hot air drying of fresh apple provided the highest antioxidant capacity (47.1±2.6 mg Trolox/g d.m.), and oleuropein contents in the final dried apple of up to 1,928 mg/100 g d.m. were found es_ES
dc.description.sponsorship The authors thank the Generalitat Valenciana (PROMETEO/2010/062, PROMETEO/2012/007, and ACOMP/2013/93) for its financial support. M. H. Ahmad Qasem was the recipient of a fellowship from the Ministerio de Educacion, Cultura y Deporte of Spain (Programa de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion). This research has also been supported by the Ministerio de Ciencia e Innovacion (DPI2012-37466-C03-03, AGL2011-29857-C03-03) and CIBERobn (CB12/03/30038, Fisiopatologia de la Obesidad y la Nutricion, CIBERobn, Instituto de Salud Carlos III. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dehydration es_ES
dc.subject Impregnation es_ES
dc.subject Modeling es_ES
dc.subject Antioxidant potential es_ES
dc.subject HPLC-DAD/MS MS es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Influence of drying on the retention of olive leaf polyphenols infused into dried apple es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-014-1387-6
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F062/ES/ESTUDIO CONJUNTO DE LOS PROCESOS DE SECADO Y EXTRACCION DE COMPONENTES BIOACTIVOS CONSIDERANDO PARAMETROS DE CALIDAD, CONSUMO ENERGETICO Y ECO-EFICIENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F007/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F93/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-29857-C03-03/ES/FOODOMICS EVALUATION OF DIETARY POLYPHENOLS AGAINST COLON CANCER USING IN-VITRO AND IN-VIVO MODELS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIBEROBN//GB12%2F03%2F30038/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2012-37466-C03-03/ES/APLICACION DE LOS ULTRASONIDOS DE POTENCIA EN LA INTENSIFICACION DE PROCESOS DE SECADO A BAJA TEMPERATURA. ANALISIS DEL PROCESO Y EFICACIA ENERGETICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Ahmad-Qasem Mateo, MH.; Santacatalina Bonet, JV.; Barrajón-Catalán, E.; Micol, V.; Cárcel Carrión, JA.; García Pérez, JV. (2015). Influence of drying on the retention of olive leaf polyphenols infused into dried apple. Food and Bioprocess Technology. 8(1):120-133. https://doi.org/10.1007/s11947-014-1387-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-014-1387-6 es_ES
dc.description.upvformatpinicio 120 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 307058 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A., & García-Pérez, J. V. (2013a). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50, 189–196. es_ES
dc.description.references Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013b). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129. es_ES
dc.description.references AOAC (1997). Official methods of analysis. Association of official analytical chemists. Virginia, USA. es_ES
dc.description.references Barros, J. (2011). Innovations in food technology special issue. Food and Bioprocess Technology, 4, 831–832. es_ES
dc.description.references Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76. es_ES
dc.description.references Betoret, N., Puente, L., Díaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., et al. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56, 273–277. es_ES
dc.description.references Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., Scarpellini, A., & Lercker, G. (2008a). Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. European Food Research and Technology, 226, 1229–1237. es_ES
dc.description.references Blanda, G., Cerretani, L., Cardinali, A., Bendini, A., & Lercker, G. (2008b). Effect of frozen storage on the phenolic content of vacuum impregnated Granny Smith and Stark Delicious apple cvv. European Food Research and Technology, 227, 961–964. es_ES
dc.description.references Chemat, F., Huma, Z., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835. es_ES
dc.description.references Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37, 175–191. es_ES
dc.description.references Cunningham, S. E., McMinn, W. A., Magee, T. R., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15–24. es_ES
dc.description.references Esclápez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Review, 3, 108–120. es_ES
dc.description.references Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185. es_ES
dc.description.references Ferrando, M., Rózek, A., Achaerandio, I., & Güell, C. (2011). Grape phenolic infusion into solid foods: studies on mass transfer and antioxidant capacity. Procedia Food Science, 1, 1494–1501. es_ES
dc.description.references Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., & Renard, C. M. G. C. (2002). Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sun-drying. Journal of Agricultural and Food Chemistry, 50, 4537–4544. es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., de la Fuente, S., & Riera, E. (2010). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(1), e539–e543. es_ES
dc.description.references García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Pérez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265. es_ES
dc.description.references Jack, F. R., O’Neill, J., Piacentini, M. G., & Schroder, M. J. A. (1997). Perception of fruit as a snack: a comparison with manufactured snack foods. Food Quality and Preference, 8, 175–182. es_ES
dc.description.references Jankovié, M. (1993). Physical properties of convectively dried and freeze-dried berrylike fruits. Faculty of Agriculture, Belgrade, 38(2), 129–135. es_ES
dc.description.references Joshi, A. P. K., Rupasinghe, H. P. V., & Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin and antioxidant capacity of red-fleshed apple slices. Journal of Food Processing and Preservation, 35, 453–457. es_ES
dc.description.references Karakaya, S. E. S. (2009). Studies of olive tree leaf extract indicate several potential health benefits. Nutrition Reviews, 67, 632–639. es_ES
dc.description.references Khan, A. A., & Vincent, J. F. V. (1990). Anisotropy of apple parenchyma. Journal of the Science of Food and Agriculture, 52(4), 455–466. es_ES
dc.description.references Lewicki, P. P., & Jakubczyk, E. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64, 307–314. es_ES
dc.description.references Mahn, A., Zamorano, M., Barrientos, H., & Reyes, A. (2012). Optimization of a process to obtain selenium-enriched freeze-dried broccoli with high antioxidant properties. LWT--Food Science and Technology, 47, 267–273. es_ES
dc.description.references Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M., & Lerici, C. (2001). Review of non enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346. es_ES
dc.description.references Maskan, M. (2001). Drying shrinkage and rehydration characteristics of kiwifruits during microwave drying. Journal of Food Engineering, 48, 177–182. es_ES
dc.description.references Menéndez, J. A., Joven, J., Aragonès, G., Barrajón-Catalán, E., Beltrán-Debón, R., Borrás-Linares, I., et al. (2013). Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle, 12(4), 555–578. es_ES
dc.description.references Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852. es_ES
dc.description.references Noorbakhsh, R., Yaghmaee, P., & Durance, T. (2013). Radiant energy under vacuum (REV) technology: a novel approach for producing probiotic enriched apple snacks. Journal of Functional Foods, 5, 1049–1056. es_ES
dc.description.references Ortuño, C., Quiles, A., & Benedito, J. (2014). Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International. doi: 10.1016/j.foodres.2014.05.012 . es_ES
dc.description.references Ozuna, C., Gomez Alvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics. Sonochemistry. doi: 10.1016/j.ultsonch.2013.12.015 . es_ES
dc.description.references Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396–3402. es_ES
dc.description.references Rózek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99, 142–150. es_ES
dc.description.references Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science & Technology, 12, 401–413. es_ES
dc.description.references Schulze, B., Hubbermann, E. M., & Schwarz, K. (2014). Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT--Food Science and Technology, 57, 426–433. es_ES
dc.description.references Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple varieties. Journal of Food Science, 66(9), 1341–1347. es_ES
dc.description.references Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328. es_ES
dc.description.references Singleton, V. L., Ortholer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. es_ES
dc.description.references Spiess, W.E.L., & Behsnilian, D. (1998). Osmotic treatments in food processing. Current stage and future needs. In: A. Ziti (Eds.), Drying ’98, vol A, pp 47–56. Thessaloniki, Greece. es_ES
dc.description.references Van Buggenhout, S., Lille, M., Messagie, I., Van Loey, A., Autio, K., & Hendrickx, M. (2006). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: quantification and relation to texture loss. European Food Research and Technology, 222(5–6), 302–308. es_ES
dc.description.references Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., et al. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132, 51–59. es_ES
dc.description.references Voda, A., Homan, N., Witek, M., Duijster, A., Van Dalen, G., Van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49, 687–693. es_ES
dc.description.references Zandstra, E. H., Graaf, C. D., & Staveren, W. A. V. (2001). Influence of health and taste attitudes on consumption of low and high-fat foods. Food Quality and Preference, 12, 75–82. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem