Mostrar el registro sencillo del ítem
dc.contributor.author | Ahmad-Qasem Mateo, Margarita Hussam | es_ES |
dc.contributor.author | Santacatalina Bonet, Juan Vicente | es_ES |
dc.contributor.author | Barrajón-Catalán, Enrique | es_ES |
dc.contributor.author | Micol, Vicente | es_ES |
dc.contributor.author | Cárcel Carrión, Juan Andrés | es_ES |
dc.contributor.author | García Pérez, José Vicente | es_ES |
dc.date.accessioned | 2016-07-26T07:12:14Z | |
dc.date.available | 2016-07-26T07:12:14Z | |
dc.date.issued | 2015-01 | |
dc.identifier.issn | 1935-5130 | |
dc.identifier.uri | http://hdl.handle.net/10251/68172 | |
dc.description.abstract | [EN] Olive leaf extracts are rich in polyphenolic compounds. Their inclusion by impregnation in food solid matrices could improve the nutritional value and antioxidant capacity of dietary products, such as apple. Drying the food matrix is interesting not only because it speeds up the infusion but also because of its effect on the final stabilization of impregnated food. In this work, the influence of drying method on the retention of infused olive leaf polyphenols in a solid matrix (apple) was addressed. For this purpose, apple cubes (10 mm side) were initially dehydrated by freeze drying or hot air drying at 60 °C and then impregnated with the olive leaf extract. After the polyphenolic infusion, samples were dried for the final stabilization by means of three different methods: freeze drying and hot air drying at 60 °C both with and without ultrasound application. The retention of infused polyphenols in apple samples was evaluated by determining the total phenolic content and antioxidant capacity and quantifying the main olive leaf polyphenols by HPLC-DAD/MS MS. The drying kinetics and the loss of apple solids during impregnation were modeled by using diffusion equations and the Weibull model, respectively. The role of fresh apple drying on the retention of infused olive leaf polyphenols was more significant than the further drying of the impregnated apple. Thus, hot air drying of fresh apple provided the highest antioxidant capacity (47.1±2.6 mg Trolox/g d.m.), and oleuropein contents in the final dried apple of up to 1,928 mg/100 g d.m. were found | es_ES |
dc.description.sponsorship | The authors thank the Generalitat Valenciana (PROMETEO/2010/062, PROMETEO/2012/007, and ACOMP/2013/93) for its financial support. M. H. Ahmad Qasem was the recipient of a fellowship from the Ministerio de Educacion, Cultura y Deporte of Spain (Programa de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion). This research has also been supported by the Ministerio de Ciencia e Innovacion (DPI2012-37466-C03-03, AGL2011-29857-C03-03) and CIBERobn (CB12/03/30038, Fisiopatologia de la Obesidad y la Nutricion, CIBERobn, Instituto de Salud Carlos III. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Food and Bioprocess Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dehydration | es_ES |
dc.subject | Impregnation | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Antioxidant potential | es_ES |
dc.subject | HPLC-DAD/MS MS | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Influence of drying on the retention of olive leaf polyphenols infused into dried apple | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11947-014-1387-6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F062/ES/ESTUDIO CONJUNTO DE LOS PROCESOS DE SECADO Y EXTRACCION DE COMPONENTES BIOACTIVOS CONSIDERANDO PARAMETROS DE CALIDAD, CONSUMO ENERGETICO Y ECO-EFICIENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F007/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F93/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2011-29857-C03-03/ES/FOODOMICS EVALUATION OF DIETARY POLYPHENOLS AGAINST COLON CANCER USING IN-VITRO AND IN-VIVO MODELS/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIBEROBN//GB12%2F03%2F30038/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2012-37466-C03-03/ES/APLICACION DE LOS ULTRASONIDOS DE POTENCIA EN LA INTENSIFICACION DE PROCESOS DE SECADO A BAJA TEMPERATURA. ANALISIS DEL PROCESO Y EFICACIA ENERGETICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Ahmad-Qasem Mateo, MH.; Santacatalina Bonet, JV.; Barrajón-Catalán, E.; Micol, V.; Cárcel Carrión, JA.; García Pérez, JV. (2015). Influence of drying on the retention of olive leaf polyphenols infused into dried apple. Food and Bioprocess Technology. 8(1):120-133. https://doi.org/10.1007/s11947-014-1387-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s11947-014-1387-6 | es_ES |
dc.description.upvformatpinicio | 120 | es_ES |
dc.description.upvformatpfin | 133 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 307058 | es_ES |
dc.identifier.eissn | 1935-5149 | |
dc.contributor.funder | Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A., & García-Pérez, J. V. (2013a). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50, 189–196. | es_ES |
dc.description.references | Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013b). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129. | es_ES |
dc.description.references | AOAC (1997). Official methods of analysis. Association of official analytical chemists. Virginia, USA. | es_ES |
dc.description.references | Barros, J. (2011). Innovations in food technology special issue. Food and Bioprocess Technology, 4, 831–832. | es_ES |
dc.description.references | Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76. | es_ES |
dc.description.references | Betoret, N., Puente, L., Díaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., et al. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56, 273–277. | es_ES |
dc.description.references | Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., Scarpellini, A., & Lercker, G. (2008a). Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. European Food Research and Technology, 226, 1229–1237. | es_ES |
dc.description.references | Blanda, G., Cerretani, L., Cardinali, A., Bendini, A., & Lercker, G. (2008b). Effect of frozen storage on the phenolic content of vacuum impregnated Granny Smith and Stark Delicious apple cvv. European Food Research and Technology, 227, 961–964. | es_ES |
dc.description.references | Chemat, F., Huma, Z., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835. | es_ES |
dc.description.references | Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37, 175–191. | es_ES |
dc.description.references | Cunningham, S. E., McMinn, W. A., Magee, T. R., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15–24. | es_ES |
dc.description.references | Esclápez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Review, 3, 108–120. | es_ES |
dc.description.references | Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185. | es_ES |
dc.description.references | Ferrando, M., Rózek, A., Achaerandio, I., & Güell, C. (2011). Grape phenolic infusion into solid foods: studies on mass transfer and antioxidant capacity. Procedia Food Science, 1, 1494–1501. | es_ES |
dc.description.references | Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., & Renard, C. M. G. C. (2002). Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sun-drying. Journal of Agricultural and Food Chemistry, 50, 4537–4544. | es_ES |
dc.description.references | García-Pérez, J. V., Cárcel, J. A., de la Fuente, S., & Riera, E. (2010). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(1), e539–e543. | es_ES |
dc.description.references | García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Pérez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265. | es_ES |
dc.description.references | Jack, F. R., O’Neill, J., Piacentini, M. G., & Schroder, M. J. A. (1997). Perception of fruit as a snack: a comparison with manufactured snack foods. Food Quality and Preference, 8, 175–182. | es_ES |
dc.description.references | Jankovié, M. (1993). Physical properties of convectively dried and freeze-dried berrylike fruits. Faculty of Agriculture, Belgrade, 38(2), 129–135. | es_ES |
dc.description.references | Joshi, A. P. K., Rupasinghe, H. P. V., & Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin and antioxidant capacity of red-fleshed apple slices. Journal of Food Processing and Preservation, 35, 453–457. | es_ES |
dc.description.references | Karakaya, S. E. S. (2009). Studies of olive tree leaf extract indicate several potential health benefits. Nutrition Reviews, 67, 632–639. | es_ES |
dc.description.references | Khan, A. A., & Vincent, J. F. V. (1990). Anisotropy of apple parenchyma. Journal of the Science of Food and Agriculture, 52(4), 455–466. | es_ES |
dc.description.references | Lewicki, P. P., & Jakubczyk, E. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64, 307–314. | es_ES |
dc.description.references | Mahn, A., Zamorano, M., Barrientos, H., & Reyes, A. (2012). Optimization of a process to obtain selenium-enriched freeze-dried broccoli with high antioxidant properties. LWT--Food Science and Technology, 47, 267–273. | es_ES |
dc.description.references | Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M., & Lerici, C. (2001). Review of non enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346. | es_ES |
dc.description.references | Maskan, M. (2001). Drying shrinkage and rehydration characteristics of kiwifruits during microwave drying. Journal of Food Engineering, 48, 177–182. | es_ES |
dc.description.references | Menéndez, J. A., Joven, J., Aragonès, G., Barrajón-Catalán, E., Beltrán-Debón, R., Borrás-Linares, I., et al. (2013). Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle, 12(4), 555–578. | es_ES |
dc.description.references | Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852. | es_ES |
dc.description.references | Noorbakhsh, R., Yaghmaee, P., & Durance, T. (2013). Radiant energy under vacuum (REV) technology: a novel approach for producing probiotic enriched apple snacks. Journal of Functional Foods, 5, 1049–1056. | es_ES |
dc.description.references | Ortuño, C., Quiles, A., & Benedito, J. (2014). Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International. doi: 10.1016/j.foodres.2014.05.012 . | es_ES |
dc.description.references | Ozuna, C., Gomez Alvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics. Sonochemistry. doi: 10.1016/j.ultsonch.2013.12.015 . | es_ES |
dc.description.references | Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396–3402. | es_ES |
dc.description.references | Rózek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99, 142–150. | es_ES |
dc.description.references | Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science & Technology, 12, 401–413. | es_ES |
dc.description.references | Schulze, B., Hubbermann, E. M., & Schwarz, K. (2014). Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT--Food Science and Technology, 57, 426–433. | es_ES |
dc.description.references | Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple varieties. Journal of Food Science, 66(9), 1341–1347. | es_ES |
dc.description.references | Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328. | es_ES |
dc.description.references | Singleton, V. L., Ortholer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. | es_ES |
dc.description.references | Spiess, W.E.L., & Behsnilian, D. (1998). Osmotic treatments in food processing. Current stage and future needs. In: A. Ziti (Eds.), Drying ’98, vol A, pp 47–56. Thessaloniki, Greece. | es_ES |
dc.description.references | Van Buggenhout, S., Lille, M., Messagie, I., Van Loey, A., Autio, K., & Hendrickx, M. (2006). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: quantification and relation to texture loss. European Food Research and Technology, 222(5–6), 302–308. | es_ES |
dc.description.references | Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., et al. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132, 51–59. | es_ES |
dc.description.references | Voda, A., Homan, N., Witek, M., Duijster, A., Van Dalen, G., Van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49, 687–693. | es_ES |
dc.description.references | Zandstra, E. H., Graaf, C. D., & Staveren, W. A. V. (2001). Influence of health and taste attitudes on consumption of low and high-fat foods. Food Quality and Preference, 12, 75–82. | es_ES |