Mostrar el registro sencillo del ítem
dc.contributor.author | Barkouti, A. | es_ES |
dc.contributor.author | Turchiuli,C. | es_ES |
dc.contributor.author | Cárcel Carrión, Juan Andrés | es_ES |
dc.contributor.author | Dumoulin,E. | es_ES |
dc.contributor.editor | Int Dairy Federat (IDF) | es_ES |
dc.contributor.editor | Inst Natl Rech Agronomique (INRA) | es_ES |
dc.date.accessioned | 2016-07-26T07:28:03Z | |
dc.date.available | 2016-07-26T07:28:03Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 1958-5586 | |
dc.identifier.uri | http://hdl.handle.net/10251/68175 | |
dc.description.abstract | [EN] Fluidized bed agglomeration is used to produce large and porous dry agglomerates with improved instant properties. Water (or binder solution) is sprayed in the fluidized bed of particles to render their surface sticky. The agglomerate growth results from the repetition of different steps (wetting of the particle surface, particles collision and bridging, and drying) and depends on the processing conditions and product properties. In this work, skim and whole milk powders were fluidized in hot air and agglomerated by spraying water in a bench-scale batch fluidized bed. The aim was to study the impact of the sprayed water flow rate (0 5.5 g.min−1), particle load (300 400 g), initial particle size (200 350 ìm), and composition (skim whole milk) on the growth mechanisms and on the properties of the agglomerates obtained. Powder samples were regularly taken in the fluidized bed during agglomeration and characterized for the size, size distribution, and water content. Whatever the conditions tested, the size increase and the evolution of the particle size distribution during agglomeration were found to mainly depend on the relative amount of water sprayed in the particle bed. Agglomeration occurred in two stages, with first the rapid association of initial particles into intermediate structures, and second, the progressive growth of porous agglomerates. In any case, agglomeration allowed improving instant properties of the milk powder. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Dairy Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Agglomeration | es_ES |
dc.subject | Fluidized bed | es_ES |
dc.subject | Growth mechanism | es_ES |
dc.subject | Powder properties | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Milk powder agglomerate growth and properties in fluidized bed agglomeration | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s13594-013-0132-7 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Barkouti, A.; Turchiuli, C.; Carcel Carrión, JA.; Dumoulin, E. (2013). Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Science and Technology. 93(4-5):523-535. doi:10.1007/s13594-013-0132-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | IDF/INRA 5th International Symposium on Spray Dried Dairy Products (SDDP) | es_ES |
dc.relation.conferencedate | JUN 19-21, 2012 | es_ES |
dc.relation.conferenceplace | Saint Malo, FRANCE | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s13594-013-0132-7 | es_ES |
dc.description.upvformatpinicio | 523 | es_ES |
dc.description.upvformatpfin | 535 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 93 | es_ES |
dc.description.issue | 4-5 | es_ES |
dc.relation.senia | 253426 | es_ES |
dc.description.references | Banjac M, Stakic M, Voronjec D (1998) Kinetics of agglomeration of milk powder in a vibro-fluidized bed. Proc. 11th International Drying Symposium (IDS'98), B: 998–1005. | es_ES |
dc.description.references | Banjac M, Stamenić M, Lečić M, Stakić M (2009) Size distribution of agglomerates of milk powder in wet granulation process in a vibro-fluidized bed. Brazilian J Chem Eng 26:515–525 | es_ES |
dc.description.references | Dewettinck K, Deroo L, Messens W, Huyghebaert A (1998) Agglomeration tendency during top-spray fluidized bed coating with gums. Lebensm Wiss Technol 31:576–584 | es_ES |
dc.description.references | Forny L, Marabi A, Palzer S (2011) Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technol 206:72–78 | es_ES |
dc.description.references | Fries L, Dosta M, Antonyuk S, Heinrich S, Palzer S (2010) Moisture distribution in fluidized beds with liquid injection. Proc. 17th International Drying Symposium (IDS 2010), Magdeburg, Germany. | es_ES |
dc.description.references | Heinrich S, Blumschein J, Henneberg M, Ihlow M, Mörl L (2003) Study of dynamic multidimensional temperature and concentration distributions in liquid-sprayed fluidized beds. Chem Eng Sci 58:5135–5160 | es_ES |
dc.description.references | Jimenez T (2007) Agglomération de particules par voie humide en lit fluidisé [Wet fluidized bed agglomeration of particles]. PhD, ENSIA, Massy, France. | es_ES |
dc.description.references | Jimenez T, Turchiuli C, Dumoulin E (2006) Particles agglomeration in a conical fluidized bed in relation with air temperature profiles. Chem Eng Sci 61:5954–5961 | es_ES |
dc.description.references | Kim EH-J, Dong Chen X, Pearce D (2009) Surface composition of industrial spray-dried milk powder. J Food Eng 94:169–181 | es_ES |
dc.description.references | Koga S, Kobayashi T, Inoue I (1989) Drying and agglomeration of skim milk powder by a vibro-fluidized bed, heat transfer. Japan Res 18:1–8 | es_ES |
dc.description.references | Maronga SJ, Wnukowski P (1997) Establishing temperature and humidity profiles in fluidized bed particulate coating. Powder Technol 94:181–185 | es_ES |
dc.description.references | Maronga SJ, Wnukowski P (1998) The use of humidity and temperature profiles in optimizing the size of fluidized bed in a coating process. Chem Eng Sci 37:423–432 | es_ES |
dc.description.references | Murrieta-Pazos I, Gaiani C, Galet L, Cuq B, Desobry S, Scher J (2011) Comparative study of particle structure evolution during water sorption: skim and whole milk powders. Coll and Surf B Biointerfaces 87:1–10 | es_ES |
dc.description.references | Neff E, Morris HAL (1968) Agglomeration of milk powder and its influence on reconstitution properties. J Dairy Sci 51:330–338 | es_ES |
dc.description.references | Niskanen T, Yliruusi J, Niskanen M, Kontro O (1990) Granulation of potassium chloride in instrumented fluidized bed granulator—part I: effect of flow rate. Acta Pharm Fenn 99:13–22 | es_ES |
dc.description.references | Palzer S (2011) Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technol 206:2–17 | es_ES |
dc.description.references | Saad MM, Barkouti A, Rondet E, Ruiz T, Cuq B (2011) Study of agglomeration mechanisms of food powders: application to durum wheat semolina. Powder Technol 208:399–408 | es_ES |
dc.description.references | Turchiuli C, Smail R, Dumoulin E (2012) Fluidized bed agglomeration of skim milk powder: analysis of sampling for the follow-up of agglomerate growth. Powder Technol 238:161–168 | es_ES |
dc.description.references | Vuataz G (2002) The phase diagram of milk: a new tool for optimizing the drying process. Lait 82:485–500 | es_ES |
dc.description.references | Waldie B, Wilkinson D, Zachra L (1987) Kinetics and mechanisms of growth in batch and continuous fluidized bed granulation. Chem Eng Sci 42:653–665 | es_ES |