- -

A knowledge growth and consolidation framework for lifelong machine learning systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A knowledge growth and consolidation framework for lifelong machine learning systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Plumed, Fernando es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Ramírez Quintana, María José es_ES
dc.date.accessioned 2016-07-28T11:23:13Z
dc.date.available 2016-07-28T11:23:13Z
dc.date.issued 2014-12
dc.identifier.isbn 978-1-4799-7415-3
dc.identifier.uri http://hdl.handle.net/10251/68390
dc.description 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract A more effective vision of machine learning systems entails tools that are able to improve task after task and to reuse the patterns and knowledge that are acquired previously for future tasks. This incremental, long-life view of machine learning goes beyond most of state-of-the-art machine learning techniques that learn throw-away models. In this paper we present a long-life knowledge acquisition, evaluation and consolidation framework that is designed to work with any rule-based machine learning or inductive inference engine and integrate it into a long-life learner. In order to do that we work over the graph of working memory rules and introduce several topological metrics over it from which we derive an oblivion criterion to drop useless rules from working memory and a consolidation process to promote the rules to the knowledge base. We evaluate the framework on a series of tasks in a chess rule learning domain. es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2014 13th International Conference on Machine Learning and Applications
dc.rights Reserva de todos los derechos es_ES
dc.subject Lifelong machine learning es_ES
dc.subject Oblivion criterion es_ES
dc.subject Knowledge topology and acquisition es_ES
dc.subject Declarative learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A knowledge growth and consolidation framework for lifelong machine learning systems es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/ICMLA.2014.23
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Martínez-Plumed, F.; Ferri Ramírez, C.; Hernández Orallo, J.; Ramírez Quintana, MJ. (2014). A knowledge growth and consolidation framework for lifelong machine learning systems. IEEE. doi:10.1109/ICMLA.2014.23 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th International Conference on Machine Learning and Applications (ICMLA 2014) es_ES
dc.relation.conferencedate December 3-6, 2014 es_ES
dc.relation.conferenceplace Detroit, USA es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/ICMLA.2014.23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 278762 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem