- -

The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora Meliá, Daniel es_ES
dc.contributor.author Iglesias Rey, Pedro Luis es_ES
dc.contributor.author Martínez-Solano, F. Javier es_ES
dc.contributor.author Muñoz-Velasco, Pedro es_ES
dc.date.accessioned 2016-09-02T12:07:58Z
dc.date.available 2016-09-02T12:07:58Z
dc.date.issued 2016-05
dc.identifier.issn 2073-4441
dc.identifier.uri http://hdl.handle.net/10251/68626
dc.description.abstract This paper presents a modified Shuffled Frog Leaping Algorithm (SFLA) applied to the design of water distribution networks. Generally, one of the major disadvantages of the traditional SFLA is the high number of parameters that need to be calibrated for proper operation of the algorithm. A method for calibrating these parameters is presented and applied to the design of three benchmark medium-sized networks widely known in the literature (Hanoi, New York Tunnel, and GoYang). For each of the problems, over 35,000 simulations were conducted. Then, a statistical analysis was performed, and the relative importance of each of the parameters was analyzed to achieve the best possible configuration of the modified SFLA. The main conclusion from this study is that not all of the original SFL algorithm parameters are important. Thus, the fraction of frogs in the memeplex q can be eliminated, while the other parameters (number of evolutionary steps Ns, number of memeplexes m, and number of frogs n) may be set to constant values that run optimally for all medium-sized networks. Furthermore, the modified acceleration parameter C becomes the key parameter in the calibration process, vastly improving the results provided by the original SFLA. es_ES
dc.description.sponsorship This work was supported by the Program Initiation into research (Project 11140128) of the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), Chile. This work was also supported by the project DPI2009-13674 (OPERAGUA) of the Direccion General de Investigacion y Gestion del Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion, Spain. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water distribution networks es_ES
dc.subject Design es_ES
dc.subject Shuffled frog leaping algorithm es_ES
dc.subject Optimization es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w8050182
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//11140128/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-13674/ES/Mejora De Las Tecnicas De Llenado Y Operacion De Redes De Abastecimiento De Agua/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Mora Meliá, D.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Muñoz-Velasco, P. (2016). The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks. Water. 2016(8). https://doi.org/10.3390/w8050182 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/w8050182 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2016 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 315597 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885-900. doi:10.1029/wr013i006p00885 es_ES
dc.description.references Fujiwara, O., & Khang, D. B. (1990). A two-phase decomposition method for optimal design of looped water distribution networks. Water Resources Research, 26(4), 539-549. doi:10.1029/wr026i004p00539 es_ES
dc.description.references Su, Y., Mays, L. W., Duan, N., & Lansey, K. E. (1987). Reliability‐Based Optimization Model for Water Distribution Systems. Journal of Hydraulic Engineering, 113(12), 1539-1556. doi:10.1061/(asce)0733-9429(1987)113:12(1539) es_ES
dc.description.references Chung, G., & Lansey, K. (2008). Application of the Shuffled Frog Leaping Algorithm for the Optimization of a General Large-Scale Water Supply System. Water Resources Management, 23(4), 797-823. doi:10.1007/s11269-008-9300-6 es_ES
dc.description.references Lansey, K. E., & Mays, L. W. (1989). Optimization Model for Water Distribution System Design. Journal of Hydraulic Engineering, 115(10), 1401-1418. doi:10.1061/(asce)0733-9429(1989)115:10(1401) es_ES
dc.description.references Martínez-Solano, J., Iglesias-Rey, P. L., Pérez-García, R., & López-Jiménez, P. A. (2008). Hydraulic Analysis of Peak Demand in Looped Water Distribution Networks. Journal of Water Resources Planning and Management, 134(6), 504-510. doi:10.1061/(asce)0733-9496(2008)134:6(504) es_ES
dc.description.references Artita, K. S., Kaini, P., & Nicklow, J. W. (2013). Examining the Possibilities: Generating Alternative Watershed-Scale BMP Designs with Evolutionary Algorithms. Water Resources Management, 27(11), 3849-3863. doi:10.1007/s11269-013-0375-3 es_ES
dc.description.references Iglesias-Rey, P. L., Martínez-Solano, F. J., Meliá, D. M., & Martínez-Solano, P. D. (2014). BBLAWN: A Combined Use of Best Management Practices and an Optimization Model Based on a Pseudo-Genetic Algorithm. Procedia Engineering, 89, 29-36. doi:10.1016/j.proeng.2014.11.156 es_ES
dc.description.references Cheng, C.-T., Feng, Z.-K., Niu, W.-J., & Liao, S.-L. (2015). Heuristic Methods for Reservoir Monthly Inflow Forecasting: A Case Study of Xinfengjiang Reservoir in Pearl River, China. Water, 7(12), 4477-4495. doi:10.3390/w7084477 es_ES
dc.description.references Huang, Y.-C., Lin, C.-C., & Yeh, H.-D. (2015). An Optimization Approach to Leak Detection in Pipe Networks Using Simulated Annealing. Water Resources Management, 29(11), 4185-4201. doi:10.1007/s11269-015-1053-4 es_ES
dc.description.references Casillas, M., Garza-Castañón, L., & Puig, V. (2015). Optimal Sensor Placement for Leak Location in Water Distribution Networks using Evolutionary Algorithms. Water, 7(11), 6496-6515. doi:10.3390/w7116496 es_ES
dc.description.references Geem, Z. (2015). Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search. Water, 7(12), 3613-3625. doi:10.3390/w7073613 es_ES
dc.description.references Louati, M. H., Benabdallah, S., Lebdi, F., & Milutin, D. (2011). Application of a Genetic Algorithm for the Optimization of a Complex Reservoir System in Tunisia. Water Resources Management, 25(10), 2387-2404. doi:10.1007/s11269-011-9814-1 es_ES
dc.description.references SAVIC, D. A., & WALTERS, G. A. (1995). AN EVOLUTION PROGRAM FOR OPTIMAL PRESSURE REGULATION IN WATER DISTRIBUTION NETWORKS. Engineering Optimization, 24(3), 197-219. doi:10.1080/03052159508941190 es_ES
dc.description.references Nazif, S., Karamouz, M., Tabesh, M., & Moridi, A. (2009). Pressure Management Model for Urban Water Distribution Networks. Water Resources Management, 24(3), 437-458. doi:10.1007/s11269-009-9454-x es_ES
dc.description.references Cozzolino, L., Cimorelli, L., Covelli, C., Mucherino, C., & Pianese, D. (2015). An Innovative Approach for Drainage Network Sizing. Water, 7(12), 546-567. doi:10.3390/w7020546 es_ES
dc.description.references Iglesias, P. (2007). STUDY OF SENSITIVITY OF THE PARAMETERS OF A GENETIC ALGORITHM FOR DESIGN OF WATER DISTRIBUTION NETWORKS. Journal of Urban and Environmental Engineering, 1(2), 61-69. doi:10.4090/juee.2007.v1n2.061069 es_ES
dc.description.references Reca, J., & Martínez, J. (2006). Genetic algorithms for the design of looped irrigation water distribution networks. Water Resources Research, 42(5). doi:10.1029/2005wr004383 es_ES
dc.description.references Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Fuertes-Miquel, V. S. (2013). Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators. Water Resources Management, 27(12), 4149-4162. doi:10.1007/s11269-013-0400-6 es_ES
dc.description.references Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 38(3), 259-277. doi:10.1080/03052150500467430 es_ES
dc.description.references Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380 es_ES
dc.description.references Eusuff, M. M., & Lansey, K. E. (2003). Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. Journal of Water Resources Planning and Management, 129(3), 210-225. doi:10.1061/(asce)0733-9496(2003)129:3(210) es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607 es_ES
dc.description.references Marchi, A., Dandy, G., Wilkins, A., & Rohrlach, H. (2014). Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management, 140(1), 22-31. doi:10.1061/(asce)wr.1943-5452.0000321 es_ES
dc.description.references Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management, 29(13), 4817-4831. doi:10.1007/s11269-015-1092-x es_ES
dc.description.references Elbeltagi, E., Hegazy, T., & Grierson, D. (2007). A modified shuffled frog-leaping optimization algorithm: applications to project management. Structure and Infrastructure Engineering, 3(1), 53-60. doi:10.1080/15732470500254535 es_ES
dc.description.references Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, 19(1), 43-53. doi:10.1016/j.aei.2005.01.004 es_ES
dc.description.references Wang, Q., Guidolin, M., Savic, D., & Kapelan, Z. (2015). Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. Journal of Water Resources Planning and Management, 141(3), 04014060. doi:10.1061/(asce)wr.1943-5452.0000460 es_ES
dc.description.references Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124-141. doi:10.1109/4235.771166 es_ES
dc.description.references Geem, Z. W., & Cho, Y.-H. (2011). Optimal Design of Water Distribution Networks Using Parameter-Setting-Free Harmony Search for Two Major Parameters. Journal of Water Resources Planning and Management, 137(4), 377-380. doi:10.1061/(asce)wr.1943-5452.0000130 es_ES
dc.description.references McClymont, K., Keedwell, E., & Savic, D. (2015). An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design. Environmental Modelling & Software, 69, 414-424. doi:10.1016/j.envsoft.2014.12.023 es_ES
dc.description.references Morgan, D. R., & Goulter, I. C. (1985). Optimal urban water distribution design. Water Resources Research, 21(5), 642-652. doi:10.1029/wr021i005p00642 es_ES
dc.description.references Savic, D. A., & Walters, G. A. (1997). Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 123(2), 67-77. doi:10.1061/(asce)0733-9496(1997)123:2(67) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem