Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Solano, F. Javier | es_ES |
dc.contributor.author | Iglesias Rey, Pedro Luis | es_ES |
dc.contributor.author | Saldarriaga, Juan G. | es_ES |
dc.contributor.author | Vallejo, David | es_ES |
dc.date.accessioned | 2016-09-02T12:28:41Z | |
dc.date.available | 2016-09-02T12:28:41Z | |
dc.date.issued | 2016-06 | |
dc.identifier.issn | 2073-4441 | |
dc.identifier.uri | http://hdl.handle.net/10251/68628 | |
dc.description.abstract | The Storm Water Management Model (SWMM) is a dynamic simulation engine of flow in sewer systems developed by the USEPA. It has been successfully used for analyzing and designing both storm water and waste water systems. However, despite including some interfacing functions, these functions are insufficient for certain simulations. This paper describes some new functions that have been added to the existing ones to form a library of functions (Toolkit). The Toolkit presented here will allow the direct modification of network data during simulation without the need to access the input file. To support the use of this library, a testing protocol was performed in order to evaluate both calculation time and accuracy of results. Finally, a case study is presented. In this application, this library will be used for the design of a sewerage network by using a genetic algorithm based on successive iterations. | es_ES |
dc.description.sponsorship | The authors would like to thank the Colombian company PAVCO-MEXICHEM and the Colombian Administrative Department for Science, Technology and Innovation COLCIENCIAS, for financing the "Drenaje Urbano y Cambio Climatico: Hacia los Sistemas de Drenaje Urbano del Futuro" investigation, under which the present paper was conceived. Likewise, the development of this paper has been possible thanks to the Spanish Ministry for Science and Innovation, who covered the "DPI2009-13674 OPERAGUA: Mejora de las tecnicas de llenado y operacion de redes de abastecimiento de agua" research project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SWMM Toolkit | es_ES |
dc.subject | Sewer system | es_ES |
dc.subject | Design | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w8060259 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Martínez-Solano, FJ.; Iglesias Rey, PL.; Saldarriaga, JG.; Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water. 8(6). doi:10.3390/w8060259 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/w8060259 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 315600 | es_ES |
dc.contributor.funder | PAVCO-MEXICHEM | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.description.references | Mays, L. W., & Yen, B. C. (1975). Optimal cost design of branched sewer systems. Water Resources Research, 11(1), 37-47. doi:10.1029/wr011i001p00037 | es_ES |
dc.description.references | Elimam, A. A., Charalambous, C., & Ghobrial, F. H. (1989). Optimum Design of Large Sewer Networks. Journal of Environmental Engineering, 115(6), 1171-1190. doi:10.1061/(asce)0733-9372(1989)115:6(1171) | es_ES |
dc.description.references | Van Nooijen, R. R., & Kolechkina, A. (2013). Speed of discrete optimization solvers for real time sewer control. Urban Water Journal, 10(5), 354-363. doi:10.1080/1573062x.2013.820330 | es_ES |
dc.description.references | Banik, B. K., Di Cristo, C., & Leopardi, A. (2014). SWMM5 Toolkit Development for Pollution Source Identification in Sewer Systems. Procedia Engineering, 89, 750-757. doi:10.1016/j.proeng.2014.11.503 | es_ES |
dc.description.references | Moeini, R., & Afshar, M. H. (2013). Constrained Ant Colony Optimisation Algorithm for the layout and size optimisation of sanitary sewer networks. Urban Water Journal, 10(3), 154-173. doi:10.1080/1573062x.2012.716445 | es_ES |
dc.description.references | Krebs, G., Kokkonen, T., Valtanen, M., Koivusalo, H., & Setälä, H. (2013). A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water Journal, 10(6), 394-410. doi:10.1080/1573062x.2012.739631 | es_ES |
dc.description.references | Savić, D. A., Bicik, J., & Morley, M. S. (2011). A DSS generator for multiobjective optimisation of spreadsheet-based models. Environmental Modelling & Software, 26(5), 551-561. doi:10.1016/j.envsoft.2010.11.004 | es_ES |
dc.description.references | Marchi, A., & Simpson, A. R. (2013). Correction of the EPANET Inaccuracy in Computing the Efficiency of Variable Speed Pumps. Journal of Water Resources Planning and Management, 139(4), 456-459. doi:10.1061/(asce)wr.1943-5452.0000273 | es_ES |
dc.description.references | Rossman, L. A., Dickinson, R. E., Schade, T., Chan, C. C., … Burgess, E. (2004). SWMM 5 - the Next Generation of EPA’s Storm Water Management Model. Journal of Water Management Modeling. doi:10.14796/jwmm.r220-16 | es_ES |
dc.description.references | Yazdi, J., Sadollah, A., Lee, E. H., Yoo, D. G., & Kim, J. H. (2015). Application of multi-objective evolutionary algorithms for the rehabilitation of storm sewer pipe networks. Journal of Flood Risk Management, 10(3), 326-338. doi:10.1111/jfr3.12143 | es_ES |
dc.description.references | Mays, L. W., & Wenzel, H. G. (1976). Optimal design of multilevel branching sewer systems. Water Resources Research, 12(5), 913-917. doi:10.1029/wr012i005p00913 | es_ES |
dc.description.references | Afshar, M. H., & Rohani, M. (2012). Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches. Engineering Optimization, 44(1), 1-22. doi:10.1080/0305215x.2011.557071 | es_ES |
dc.description.references | Cozzolino, L., Cimorelli, L., Covelli, C., Mucherino, C., & Pianese, D. (2015). An Innovative Approach for Drainage Network Sizing. Water, 7(12), 546-567. doi:10.3390/w7020546 | es_ES |
dc.description.references | Guo, Y. F., Walters, G. A., Khu, S. T., & Keedwell, E. C. (2008). Efficient Multiobjective Storm Sewer Design Using Cellular Automata and Genetic Algorithm Hybrid. Journal of Water Resources Planning and Management, 134(6), 511-515. doi:10.1061/(asce)0733-9496(2008)134:6(511) | es_ES |
dc.description.references | Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Fuertes-Miquel, V. S. (2013). Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators. Water Resources Management, 27(12), 4149-4162. doi:10.1007/s11269-013-0400-6 | es_ES |
dc.description.references | Mora-Melia, D., Iglesias-Rey, P. L., Martinez-Solano, F. J., & Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management, 29(13), 4817-4831. doi:10.1007/s11269-015-1092-x | es_ES |
dc.description.references | Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, 19(1), 43-53. doi:10.1016/j.aei.2005.01.004 | es_ES |