- -

The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bueso Ródenas, Eduardo es_ES
dc.contributor.author Rodriguez, Lesia es_ES
dc.contributor.author Lorenzo Orts, Laura es_ES
dc.contributor.author González Guzmán, Miguel es_ES
dc.contributor.author Sayas Montañana, Enric Miquel es_ES
dc.contributor.author Muñoz Bertomeu, Jesús es_ES
dc.contributor.author Ibañez, Carla es_ES
dc.contributor.author Serrano Salom, Ramón es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.date.accessioned 2016-09-05T07:55:08Z
dc.date.available 2016-09-05T07:55:08Z
dc.date.issued 2014-12
dc.identifier.issn 0960-7412
dc.identifier.uri http://hdl.handle.net/10251/68682
dc.description.abstract [EN] Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1–PYL4 and RSL1–PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas (grants BIO2011-23446 to P.L.R.; BFU2011-22526 to R.S.; fellowship to L.R.; fellowship UPV to L.L-O; JAE-DOC contract to M.G.G.). We acknowledge Professor Joerg Kudla (University of Munster, Germany) for kindly providing plasma membrane marker OFP-TM23. Technical assistance of Maria A. Fernandez is greatly acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ABA receptor es_ES
dc.subject Protein turnover es_ES
dc.subject RING E3 ubiquitin ligase es_ES
dc.subject RFA gene family es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/tpj.12708
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-23446/ES/SEÑALIZACION DE ABA MEDIADA POR LOS RECEPTORES PYR%2FPYL Y SU CONEXION CON LOS MECANISMOS DE RESISTENCIA A SEQUIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Bueso Ródenas, E.; Rodriguez, L.; Lorenzo Orts, L.; González Guzmán, M.; Sayas Montañana, EM.; Muñoz Bertomeu, J.; Ibañez, C.... (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant Journal. 80(6):1057-1071. https://doi.org/10.1111/tpj.12708 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1111/tpj.12708 es_ES
dc.description.upvformatpinicio 1057 es_ES
dc.description.upvformatpfin 1071 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 80 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 287868 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root. Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678 es_ES
dc.description.references Barberon, M., Zelazny, E., Robert, S., Conéjéro, G., Curie, C., Friml, J., & Vert, G. (2011). Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences, 108(32), E450-E458. doi:10.1073/pnas.1100659108 es_ES
dc.description.references Batistič, O., Sorek, N., Schültke, S., Yalovsky, S., & Kudla, J. (2008). Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca2+ Signaling Complexes in Arabidopsis. The Plant Cell, 20(5), 1346-1362. doi:10.1105/tpc.108.058123 es_ES
dc.description.references Batistič, O., Rehers, M., Akerman, A., Schlücking, K., Steinhorst, L., Yalovsky, S., & Kudla, J. (2012). S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Research, 22(7), 1155-1168. doi:10.1038/cr.2012.71 es_ES
dc.description.references Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907 es_ES
dc.description.references Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., … Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 109(26), 10593-10598. doi:10.1073/pnas.1116590109 es_ES
dc.description.references Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-Guzmán, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004 es_ES
dc.description.references Capili, A. D., Edghill, E. ., Wu, K., & Borden, K. L. . (2004). Structure of the C-terminal RING Finger from a RING-IBR-RING/TRIAD Motif Reveals a Novel Zinc-binding Domain Distinct from a RING. Journal of Molecular Biology, 340(5), 1117-1129. doi:10.1016/j.jmb.2004.05.035 es_ES
dc.description.references Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 es_ES
dc.description.references Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., … Kreuzer, I. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proceedings of the National Academy of Sciences, 110(20), 8296-8301. doi:10.1073/pnas.1211667110 es_ES
dc.description.references French, A. P., Mills, S., Swarup, R., Bennett, M. J., & Pridmore, T. P. (2008). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 3(4), 619-628. doi:10.1038/nprot.2008.31 es_ES
dc.description.references Friml, J. (2010). Subcellular trafficking of PIN auxin efflux carriers in auxin transport. European Journal of Cell Biology, 89(2-3), 231-235. doi:10.1016/j.ejcb.2009.11.003 es_ES
dc.description.references Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 es_ES
dc.description.references Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., … Yamaguchi-Shinozaki, K. (2009). Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2123-2132. doi:10.1093/pcp/pcp147 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+affinities. Proceedings of the National Academy of Sciences, 107(17), 8023-8028. doi:10.1073/pnas.0912030107 es_ES
dc.description.references Geiger, D., Maierhofer, T., AL-Rasheid, K. A. S., Scherzer, S., Mumm, P., Liese, A., … Hedrich, R. (2011). Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 4(173), ra32-ra32. doi:10.1126/scisignal.2001346 es_ES
dc.description.references Geldner, N., & Jürgens, G. (2006). Endocytosis in signalling and development. Current Opinion in Plant Biology, 9(6), 589-594. doi:10.1016/j.pbi.2006.09.011 es_ES
dc.description.references Geldner, N., Dénervaud-Tendon, V., Hyman, D. L., Mayer, U., Stierhof, Y.-D., & Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. The Plant Journal, 59(1), 169-178. doi:10.1111/j.1365-313x.2009.03851.x es_ES
dc.description.references Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574 es_ES
dc.description.references Hirsch, C., Gauss, R., Horn, S. C., Neuber, O., & Sommer, T. (2009). The ubiquitylation machinery of the endoplasmic reticulum. Nature, 458(7237), 453-460. doi:10.1038/nature07962 es_ES
dc.description.references Hua, Z., & Vierstra, R. D. (2011). The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 62(1), 299-334. doi:10.1146/annurev-arplant-042809-112256 es_ES
dc.description.references Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234 es_ES
dc.description.references Jones, A. M., Xuan, Y., Xu, M., Wang, R.-S., Ho, C.-H., Lalonde, S., … Frommer, W. B. (2014). Border Control--A Membrane-Linked Interactome of Arabidopsis. Science, 344(6185), 711-716. doi:10.1126/science.1251358 es_ES
dc.description.references Kasai, K., Takano, J., Miwa, K., Toyoda, A., & Fujiwara, T. (2010). High Boron-induced Ubiquitination Regulates Vacuolar Sorting of the BOR1 Borate Transporter inArabidopsis thaliana. Journal of Biological Chemistry, 286(8), 6175-6183. doi:10.1074/jbc.m110.184929 es_ES
dc.description.references Kim, D.-Y., Scalf, M., Smith, L. M., & Vierstra, R. D. (2013). Advanced Proteomic Analyses Yield a Deep Catalog of Ubiquitylation Targets in Arabidopsis. The Plant Cell, 25(5), 1523-1540. doi:10.1105/tpc.112.108613 es_ES
dc.description.references Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: linking elements that control stomatal movement. New Phytologist, 203(1), 44-62. doi:10.1111/nph.12832 es_ES
dc.description.references Kosarev, P., Mayer, K. F., & Hardtke, C. S. (2002). Genome Biology, 3(4), research0016.1. doi:10.1186/gb-2002-3-4-research0016 es_ES
dc.description.references Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 es_ES
dc.description.references Liu, L., Zhang, Y., Tang, S., Zhao, Q., Zhang, Z., Zhang, H., … Xie, Q. (2010). An efficient system to detect protein ubiquitination by agroinfiltration inNicotiana benthamiana. The Plant Journal, 61(5), 893-903. doi:10.1111/j.1365-313x.2009.04109.x es_ES
dc.description.references Lyzenga, W. J., & Stone, S. L. (2011). Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 63(2), 599-616. doi:10.1093/jxb/err310 es_ES
dc.description.references MacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619 es_ES
dc.description.references Manzano, C., Abraham, Z., López-Torrejón, G., & Del Pozo, J. C. (2008). Identification of ubiquitinated proteins in Arabidopsis. Plant Molecular Biology, 68(1-2), 145-158. doi:10.1007/s11103-008-9358-9 es_ES
dc.description.references Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93 es_ES
dc.description.references Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.-S. P. (2013). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202(1), 35-49. doi:10.1111/nph.12613 es_ES
dc.description.references Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A Acts to Stabilize an Abortive ARF–GDP–Sec7 Domain Protein Complex. Molecular Cell, 3(3), 275-285. doi:10.1016/s1097-2765(00)80455-4 es_ES
dc.description.references Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162 es_ES
dc.description.references Pollier, J., Moses, T., González-Guzmán, M., De Geyter, N., Lippens, S., Bossche, R. V., … Goossens, A. (2013). The protein quality control system manages plant defence compound synthesis. Nature, 504(7478), 148-152. doi:10.1038/nature12685 es_ES
dc.description.references Popper, Z. A., Michel, G., Hervé, C., Domozych, D. S., Willats, W. G. T., Tuohy, M. G., … Stengel, D. B. (2011). Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annual Review of Plant Biology, 62(1), 567-590. doi:10.1146/annurev-arplant-042110-103809 es_ES
dc.description.references Van Der Reijden, B. A., Erpelinck-Verschueren, C. A. J., BOB LÖWENBERG, & Jansen, J. H. (1999). TRIADs: A new class of proteins with a novel cysteine-rich signature. Protein Science, 8(7), 1557-1561. doi:10.1110/ps.8.7.1557 es_ES
dc.description.references Richardson, L. G. L., Howard, A. S. M., Khuu, N., Gidda, S. K., McCartney, A., Morphy, B. J., & Mullen, R. T. (2011). Protein–Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00020 es_ES
dc.description.references Robinson, D. G., Langhans, M., Saint-Jore-Dupas, C., & Hawes, C. (2008). BFA effects are tissue and not just plant specific. Trends in Plant Science, 13(8), 405-408. doi:10.1016/j.tplants.2008.05.010 es_ES
dc.description.references Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R., & Rodriguez, P. L. (2006). Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1. Plant Physiology, 141(4), 1389-1399. doi:10.1104/pp.106.081018 es_ES
dc.description.references Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x es_ES
dc.description.references Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071-1078. doi:10.1038/nature08122 es_ES
dc.description.references Saracco, S. A., Hansson, M., Scalf, M., Walker, J. M., Smith, L. M., & Vierstra, R. D. (2009). Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. The Plant Journal, 59(2), 344-358. doi:10.1111/j.1365-313x.2009.03862.x es_ES
dc.description.references Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221 es_ES
dc.description.references Scheuring, D., Künzl, F., Viotti, C., Yan, M. S. W., Jiang, L., Schellmann, S., … Pimpl, P. (2012). Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 12(1), 164. doi:10.1186/1471-2229-12-164 es_ES
dc.description.references Sirichandra, C., Gu, D., Hu, H.-C., Davanture, M., Lee, S., Djaoui, M., … Kwak, J. M. (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Letters, 583(18), 2982-2986. doi:10.1016/j.febslet.2009.08.033 es_ES
dc.description.references Smalle, J., & Vierstra, R. D. (2004). THE UBIQUITIN 26S PROTEASOME PROTEOLYTIC PATHWAY. Annual Review of Plant Biology, 55(1), 555-590. doi:10.1146/annurev.arplant.55.031903.141801 es_ES
dc.description.references Spitzer, C., Reyes, F. C., Buono, R., Sliwinski, M. K., Haas, T. J., & Otegui, M. S. (2009). The ESCRT-Related CHMP1A and B Proteins Mediate Multivesicular Body Sorting of Auxin Carriers in Arabidopsis and Are Required for Plant Development. The Plant Cell, 21(3), 749-766. doi:10.1105/tpc.108.064865 es_ES
dc.description.references Teis, D., Saksena, S., & Emr, S. D. (2009). SnapShot: The ESCRT Machinery. Cell, 137(1), 182-182.e1. doi:10.1016/j.cell.2009.03.027 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 es_ES
dc.description.references Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688 es_ES
dc.description.references Viotti, C., Bubeck, J., Stierhof, Y.-D., Krebs, M., Langhans, M., van den Berg, W., … Schumacher, K. (2010). Endocytic and Secretory Traffic in Arabidopsis Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. The Plant Cell, 22(4), 1344-1357. doi:10.1105/tpc.109.072637 es_ES
dc.description.references Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 es_ES
dc.description.references Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33(5), 949-956. doi:10.1046/j.1365-313x.2003.01676.x es_ES
dc.description.references Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B., & Xie, Q. (2013). A plant-specificin vitroubiquitination analysis system. The Plant Journal, 74(3), 524-533. doi:10.1111/tpj.12127 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem