Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Macías, Félix | es_ES |
dc.contributor.author | Arif, Anjuman | es_ES |
dc.contributor.author | González Nebauer, Sergio | es_ES |
dc.contributor.author | Bueso Ródenas, Eduardo | es_ES |
dc.contributor.author | Ali, Rashid | es_ES |
dc.contributor.author | Montesinos De Lago, Consuelo | es_ES |
dc.contributor.author | Brunaud, Veronique | es_ES |
dc.contributor.author | Muñoz Bertomeu, Jesús | es_ES |
dc.contributor.author | Serrano Salom, Ramón | |
dc.date.accessioned | 2016-09-05T08:24:31Z | |
dc.date.available | 2016-09-05T08:24:31Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0032-0935 | |
dc.identifier.uri | http://hdl.handle.net/10251/68689 | |
dc.description.abstract | [EN] A fungal gene encoding a transcription factor is expressed from its own promoter in Arabidopsis phloem and improves drought tolerance by reducing transpiration and increasing osmotic potential. Horizontal gene transfer from unrelated organisms has occurred in the course of plant evolution, suggesting that some foreign genes may be useful to plants. The CtHSR1 gene, previously isolated from the halophytic yeast Candida tropicalis, encodes a heat-shock transcription factor-related protein. CtHSR1, with expression driven by its own promoter or by the Arabidopsis UBQ10 promoter, was introduced into the model plant Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation and the resulting transgenic plants were more tolerant to drought than controls. Fusions of the CtHSR1 promoter with beta-glucuronidase reporter gene indicated that this fungal promoter drives expression to phloem tissues. A chimera of CtHSR1 and green fluorescence protein is localized at the cell nucleus. The physiological mechanism of drought tolerance in transgenic plants is based on reduced transpiration (which correlates with decreased opening of stomata and increased levels of jasmonic acid) and increased osmotic potential (which correlates with increased proline accumulation). Transcriptomic analysis indicates that the CtHSR1 transgenic plants overexpressed a hundred of genes, including many relevant to stress defense such as LOX4 (involved in jasmonic acid synthesis) and P5CS1 (involved in proline biosynthesis). The promoters of the induced genes were enriched in upstream activating sequences for water stress induction. These results demonstrate that genes from unrelated organisms can have functional expression in plants from its own promoter and expand the possibilities of useful transgenes for plant biotechnology. | es_ES |
dc.description.sponsorship | We acknowledge support by Grants BFU2011-22526 of the Spanish MICINN (Madrid, Spain) and PROMETEO II 2014-041 of Generalitat Valenciana (Valencia, Spain). J. M.-B. was supported by a Juan de la Cierva contract of the Spanish MICINN. A. A. was supported by a short-term EMBO fellowship to visit the laboratory of R. Serrano. We thank Dr. Jose Maria Belles (IBMCP, Valencia, Spain) for assistance in the determination of sugars, Dr. Isabel Lopez-Diaz and Dr. Esther Carrera for the hormone analysis carried out at the Plant Hormone Quantification Service of IBMCP and Prof. Jorg Kudla (Westfalische Wilhelms-Universitat, Munster, Germany) for the pGPTVII.Hyg.P<INF>UBQ10</INF>::MCS plasmid. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Planta | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Candida tropicalis | es_ES |
dc.subject | Horizontal gene transfer | es_ES |
dc.subject | Jasmonic acid | es_ES |
dc.subject | Proline | es_ES |
dc.subject | Water relations | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | FISIOLOGIA VEGETAL | es_ES |
dc.title | A fungal transcription factor gene is expressed in plants from its own promoter and improves drought tolerance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00425-015-2285-5 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F041/ES/La homeostasis de cationes monovalentes (H+, K+ y Na+) y el crecimiento y muerte celular/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Martínez Macías, F.; Arif, A.; González Nebauer, S.; Bueso Ródenas, E.; Ali, R.; Montesinos De Lago, C.; Brunaud, V.... (2015). A fungal transcription factor gene is expressed in plants from its own promoter and improves drought tolerance. Planta. 242(1):39-52. https://doi.org/10.1007/s00425-015-2285-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s00425-015-2285-5 | |
dc.description.upvformatpinicio | 39 | es_ES |
dc.description.upvformatpfin | 52 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 242 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 291386 | es_ES |
dc.identifier.eissn | 1432-2048 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Molecular Biology Organization | es_ES |
dc.description.references | Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462 | es_ES |
dc.description.references | Alba MM, Tompa P, Veitia RA (2007) Amino acid repeats and the structure and evolution of proteins. Genome Dyn 3:119–130 | es_ES |
dc.description.references | Alejandro S, Rodríguez PL, Bellés JM, Yenush L, García-Sanchez MJ, Fernández JA, Serrano R (2007) An Arabidopsis quiescin-sulfhydryl oxidase regulates cation homeostasis at the root symplast-xylem interface. EMBO J 26:3203–3215 | es_ES |
dc.description.references | Ali R, Pascual-Ahuir A, Marquez JA, Malik KA, Serrano R (2001) Identification of Candida tropicalis HSR1, a gene of the heat-shock factor-related family, which confers salt tolerance in Saccharomyces cerevisiae. Yeast 18:605–610 | es_ES |
dc.description.references | Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 | es_ES |
dc.description.references | Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris/Life Sci 316:1194–1199 | es_ES |
dc.description.references | Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966 | es_ES |
dc.description.references | Bernard V, Lecharny A, Brunaud V (2010) Improved detection of motifs with preferential location in promoters. Genome 53:739–752 | es_ES |
dc.description.references | Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721 | es_ES |
dc.description.references | Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García- Sánchez MJ, Fernández JA, Mulet JM, Serrano R (2012) Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J 70:704–716 | es_ES |
dc.description.references | Bock R (2009) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22 | es_ES |
dc.description.references | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 | es_ES |
dc.description.references | Bueso E, Alejandro S, Carbonell P, Perez-Amador MA, Fayos J, Bellés JM, Rodriguez PL, Serrano R (2007) The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J 52:1052–1065 | es_ES |
dc.description.references | Bueso E, Muñoz-Bertomeu J, Campos F, Brunaud V, Martínez L, Sayas E, Ballester P, Yenush L, Serrano R (2014) ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for gibberellins in seed longevity. Plant Physiol 164:999–1010 | es_ES |
dc.description.references | Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582 | es_ES |
dc.description.references | Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330 | es_ES |
dc.description.references | Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469 | es_ES |
dc.description.references | Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17 | es_ES |
dc.description.references | Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365 | es_ES |
dc.description.references | Han G, Wang M, Yuan F, Sui N, Song J, Wang B (2014) The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86:237–253 | es_ES |
dc.description.references | Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637 | es_ES |
dc.description.references | Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoot RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180 | es_ES |
dc.description.references | Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ 37:300–311 | es_ES |
dc.description.references | Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396 | es_ES |
dc.description.references | Landsman D, Wolffe AP (1995) Common sequence and structural features in the heat- shock factor and Ets families of DNA binding domains. Trends Biochem Sci 20:225–226 | es_ES |
dc.description.references | Montillet J-L, Hirt H (2013) New checkpoints in stomatal defense. Trends Plant Sci 18:295–297 | es_ES |
dc.description.references | Naleway JJ (1992) Histochemical, spectrophotometric, and fluorometric GUS substrates. In: Gallagher SR (ed) GUS protocols. Using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 61–76 | es_ES |
dc.description.references | Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21:895–906 | es_ES |
dc.description.references | Ozalvo R, Cabrera J, Escobar C, Christensen SA, Borrego EJ, Kolomiets MV, Castresana C, Iberkleid I, Brown Horowitz S (2014) Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Mol Plant Pathol 15:319–332 | es_ES |
dc.description.references | Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 | es_ES |
dc.description.references | Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant, Cell Environ 25:141–151 | es_ES |
dc.description.references | Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea 2013:373275. doi: 10.1155/2013/373275 | es_ES |
dc.description.references | Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das A (2007) Characterization of vascular-specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta 226:429–442 | es_ES |
dc.description.references | Schönknecht G, Weber AP, Lercher MJ (2014) Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36:9–20 | es_ES |
dc.description.references | Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366 | es_ES |
dc.description.references | Sun X, Li Y, Cai H, Bai X, Ji W, Ding X, Zhu Y (2012) The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. J Plant Res 125:429–438 | es_ES |
dc.description.references | Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28 | es_ES |
dc.description.references | Talianova M, Janousek B (2011) What can we learn from tobacco and other solanaceae about horizontal gene transfer? Am J Bot 98:1231–1242 | es_ES |
dc.description.references | Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Mol Cell Biol 11:777–778 | es_ES |
dc.description.references | Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 | es_ES |
dc.description.references | Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438 | es_ES |
dc.description.references | Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94 | es_ES |
dc.description.references | Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058 | es_ES |
dc.description.references | Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551 | es_ES |
dc.description.references | Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39:D1118–D1122 | es_ES |
dc.description.references | Yin Y, Beachy R (1997) Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J 12:1179–1188 | es_ES |