Mostrar el registro sencillo del ítem
dc.contributor.author | Mencia, Carlos | es_ES |
dc.contributor.author | Sierra, María R. | es_ES |
dc.contributor.author | Salido Gregorio, Miguel Angel | es_ES |
dc.contributor.author | Escamilla Fuster, Joan | es_ES |
dc.contributor.author | Varela, Ramiro | es_ES |
dc.date.accessioned | 2016-09-07T10:44:39Z | |
dc.date.available | 2016-09-07T10:44:39Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0921-7126 | |
dc.identifier.uri | http://hdl.handle.net/10251/68983 | |
dc.description.abstract | The job shop scheduling problem with an additional resource type has been recently proposed to model the situation where each operation in a job shop has to be assisted by one of a limited set of human operators. We confront this problem with the objective of minimizing the total flow time, which makes the problem more interesting from a practical point of view and harder to solve than the version with makespan minimization. To solve this problem we propose an enhanced dept-first search algorithm. This algorithm exploits a schedule generation schema termed OG&T, two admissible heuristics and some powerful pruning rules. In order to diversify the search, we also consider a variant of this algorithm with restarts. We have conducted an experimental study across several benchmarks. The results of this study show that the global pruning rules are really effective and that the proposed algorithms are quite competent for solving this problem. | es_ES |
dc.description.sponsorship | We are grateful to the anonymous referees for their comments and suggestions, that made it possible to improve this paper. This research has been supported by the Spanish Government under projects MEC-FEDER TIN-20976-C02-01 and TIN-20976-C02-02 and by the Principality of Asturias under Grant FICYT-BP09105. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation.ispartof | AI Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Depth first search | es_ES |
dc.subject | Pruning by dominance | es_ES |
dc.subject | Job shop scheduling problem | es_ES |
dc.subject | Operators | es_ES |
dc.subject | Restarts | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3233/AIC-140630 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-02/ES/METAHEURISTICAS PARA LA ESTABILIDAD Y ROBUSTEZ EN SCHEDULING CON INCERTIDUMBRE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Gobierno del Principado de Asturias//BP09105/ES/BP09105/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Mencia, C.; Sierra, MR.; Salido Gregorio, MA.; Escamilla Fuster, J.; Varela, R. (2015). Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules. AI Communications. 28(2):365-381. https://doi.org/10.3233/AIC-140630 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3233/AIC-140630 | es_ES |
dc.description.upvformatpinicio | 365 | es_ES |
dc.description.upvformatpfin | 381 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 253873 | es_ES |
dc.identifier.eissn | 1875-8452 | |
dc.contributor.funder | Gobierno del Principado de Asturias | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |