- -

Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mencia, Carlos es_ES
dc.contributor.author Sierra, María R. es_ES
dc.contributor.author Salido Gregorio, Miguel Angel es_ES
dc.contributor.author Escamilla Fuster, Joan es_ES
dc.contributor.author Varela, Ramiro es_ES
dc.date.accessioned 2016-09-07T10:44:39Z
dc.date.available 2016-09-07T10:44:39Z
dc.date.issued 2015
dc.identifier.issn 0921-7126
dc.identifier.uri http://hdl.handle.net/10251/68983
dc.description.abstract The job shop scheduling problem with an additional resource type has been recently proposed to model the situation where each operation in a job shop has to be assisted by one of a limited set of human operators. We confront this problem with the objective of minimizing the total flow time, which makes the problem more interesting from a practical point of view and harder to solve than the version with makespan minimization. To solve this problem we propose an enhanced dept-first search algorithm. This algorithm exploits a schedule generation schema termed OG&T, two admissible heuristics and some powerful pruning rules. In order to diversify the search, we also consider a variant of this algorithm with restarts. We have conducted an experimental study across several benchmarks. The results of this study show that the global pruning rules are really effective and that the proposed algorithms are quite competent for solving this problem. es_ES
dc.description.sponsorship We are grateful to the anonymous referees for their comments and suggestions, that made it possible to improve this paper. This research has been supported by the Spanish Government under projects MEC-FEDER TIN-20976-C02-01 and TIN-20976-C02-02 and by the Principality of Asturias under Grant FICYT-BP09105. en_EN
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof AI Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Depth first search es_ES
dc.subject Pruning by dominance es_ES
dc.subject Job shop scheduling problem es_ES
dc.subject Operators es_ES
dc.subject Restarts es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/AIC-140630
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-02/ES/METAHEURISTICAS PARA LA ESTABILIDAD Y ROBUSTEZ EN SCHEDULING CON INCERTIDUMBRE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno del Principado de Asturias//BP09105/ES/BP09105/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Mencia, C.; Sierra, MR.; Salido Gregorio, MA.; Escamilla Fuster, J.; Varela, R. (2015). Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules. AI Communications. 28(2):365-381. https://doi.org/10.3233/AIC-140630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3233/AIC-140630 es_ES
dc.description.upvformatpinicio 365 es_ES
dc.description.upvformatpfin 381 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 253873 es_ES
dc.identifier.eissn 1875-8452
dc.contributor.funder Gobierno del Principado de Asturias es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem