- -

The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Bertomeu, Jesús es_ES
dc.contributor.author Anoman, Armand Djoro es_ES
dc.contributor.author Flores-Tornero, María es_ES
dc.contributor.author Toujani, Walid es_ES
dc.contributor.author Rosa-Tellez, Sara es_ES
dc.contributor.author Fernie, Alisdair R es_ES
dc.contributor.author Roje, Sanja es_ES
dc.contributor.author Segura, Juan es_ES
dc.contributor.author Ros, Roc es_ES
dc.date.accessioned 2016-09-07T11:04:47Z
dc.date.available 2016-09-07T11:04:47Z
dc.date.issued 2013-11
dc.identifier.issn 1559-2316
dc.identifier.uri http://hdl.handle.net/10251/68986
dc.description.abstract [EN] In plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study1 , we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Following a gain—and loss-of-function approach in Arabidopsis, we provided genetic and molecular evidence for the essential role of PSP1 for embryo and pollen development, and for proper root growth. A metabolomics study indicated that the PPSB affects glycolysis, the Krebs cycle, and the biosynthesis of several amino acids, which suggests that this pathway is an important link connecting metabolism and development. The mechanisms underlying the essential functions of PSP1 are discussed. es_ES
dc.description.sponsorship This work has been funded by the Spanish government and the European Union: FEDER/ BFU2012–31519, JdlC to Muñoz-Bertomeu J, FPI fellowship to Rosa-Téllez S, AECI fellowship to Anoman AD; the Valencian Regional Government: PROMETEO/2009/075; and the University of Valencia: “Atracció de Talent” fellowship to Flores-Tornero M.
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Plant Signaling and Behavior es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Phosphorylated pathway of serine biosynthesis es_ES
dc.subject Phosphoserine phosphatase es_ES
dc.subject Male gametophyte es_ES
dc.subject Root and embryo development es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4161/psb.27104
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-31519/ES/CARACTERIZACION FUNCIONAL DE ENZIMAS CLAVE DEL METABOLISMO PLASTIDIAL EN ARABIDOPSIS Y MAIZ COMO ESTRATEGIA PARA MEJORAR LA CALIDAD NUTRICIONAL DE LAS PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Muñoz Bertomeu, J.; Anoman, AD.; Flores-Tornero, M.; Toujani, W.; Rosa-Tellez, S.; Fernie, AR.; Roje, S.... (2013). The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis. Plant Signaling and Behavior. 8(11):27104-27104. https://doi.org/10.4161/psb.27104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.4161/psb.27104 es_ES
dc.description.upvformatpinicio 27104 es_ES
dc.description.upvformatpfin 27104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 255037 es_ES
dc.identifier.pmid 24299976
dc.identifier.pmcid PMC4091574
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cascales-Minana, B., Munoz-Bertomeu, J., Flores-Tornero, M., Anoman, A. D., Pertusa, J., Alaiz, M., … Ros, R. (2013). The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. The Plant Cell, 25(6), 2084-2101. doi:10.1105/tpc.113.112359 es_ES
dc.description.references Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194 es_ES
dc.description.references Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101 es_ES
dc.description.references Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: players, partners and origin. Trends in Plant Science, 15(6), 330-336. doi:10.1016/j.tplants.2010.03.006 es_ES
dc.description.references Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6(4), 167-176. doi:10.1016/s1360-1385(01)01892-1 es_ES
dc.description.references Tolbert NE. Photorespiration. In: Davies DD, ed. The Biochemistry of Plants. Academic Press: New York, 1980: 488-525 es_ES
dc.description.references Kleczkowski, L. A., & Givan, C. V. (1988). Serine Formation in Leaves by Mechanisms other than the Glycolate Pathway. Journal of Plant Physiology, 132(6), 641-652. doi:10.1016/s0176-1617(88)80223-2 es_ES
dc.description.references Muñoz-Bertomeu, J., Cascales-Miñana, B., Mulet, J. M., Baroja-Fernández, E., Pozueta-Romero, J., Kuhn, J. M., … Ros, R. (2009). Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis. Plant Physiology, 151(2), 541-558. doi:10.1104/pp.109.143701 es_ES
dc.description.references Muñoz-Bertomeu, J., Cascales-Miñana, B., Irles-Segura, A., Mateu, I., Nunes-Nesi, A., Fernie, A. R., … Ros, R. (2010). The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Viable Pollen Development in Arabidopsis. Plant Physiology, 152(4), 1830-1841. doi:10.1104/pp.109.150458 es_ES
dc.description.references Collakova, E., Goyer, A., Naponelli, V., Krassovskaya, I., Gregory, J. F., Hanson, A. D., & Shachar-Hill, Y. (2008). Arabidopsis 10-Formyl Tetrahydrofolate Deformylases Are Essential for Photorespiration. The Plant Cell, 20(7), 1818-1832. doi:10.1105/tpc.108.058701 es_ES
dc.description.references Srivastava, A. C., Ramos-Parra, P. A., Bedair, M., Robledo-Hernández, A. L., Tang, Y., Sumner, L. W., … Blancaflor, E. B. (2011). The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis. Plant Physiology, 155(3), 1237-1251. doi:10.1104/pp.110.168278 es_ES
dc.description.references Dietrich, C. R., Han, G., Chen, M., Berg, R. H., Dunn, T. M., & Cahoon, E. B. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. The Plant Journal, 54(2), 284-298. doi:10.1111/j.1365-313x.2008.03420.x es_ES
dc.description.references Yamaoka, Y., Yu, Y., Mizoi, J., Fujiki, Y., Saito, K., Nishijima, M., … Nishida, I. (2011). PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. The Plant Journal, 67(4), 648-661. doi:10.1111/j.1365-313x.2011.04624.x es_ES
dc.description.references Timm, S., Mielewczik, M., Florian, A., Frankenbach, S., Dreissen, A., Hocken, N., … Bauwe, H. (2012). High-to-Low CO2 Acclimation Reveals Plasticity of the Photorespiratory Pathway and Indicates Regulatory Links to Cellular Metabolism of Arabidopsis. PLoS ONE, 7(8), e42809. doi:10.1371/journal.pone.0042809 es_ES
dc.description.references Moore, B. (2003). Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling. Science, 300(5617), 332-336. doi:10.1126/science.1080585 es_ES
dc.description.references Guo, L., Devaiah, S. P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W., & Wang, X. (2012). Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress. The Plant Cell, 24(5), 2200-2212. doi:10.1105/tpc.111.094946 es_ES
dc.description.references Bachelor, M. A., Lu, Y., & Owens, D. M. (2011). l-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of l-serine biosynthesis. Journal of Dermatological Science, 63(3), 164-172. doi:10.1016/j.jdermsci.2011.06.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem