Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Bertomeu, Jesús | es_ES |
dc.contributor.author | Anoman, Armand Djoro | es_ES |
dc.contributor.author | Flores-Tornero, María | es_ES |
dc.contributor.author | Toujani, Walid | es_ES |
dc.contributor.author | Rosa-Tellez, Sara | es_ES |
dc.contributor.author | Fernie, Alisdair R | es_ES |
dc.contributor.author | Roje, Sanja | es_ES |
dc.contributor.author | Segura, Juan | es_ES |
dc.contributor.author | Ros, Roc | es_ES |
dc.date.accessioned | 2016-09-07T11:04:47Z | |
dc.date.available | 2016-09-07T11:04:47Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 1559-2316 | |
dc.identifier.uri | http://hdl.handle.net/10251/68986 | |
dc.description.abstract | [EN] In plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study1 , we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Following a gain—and loss-of-function approach in Arabidopsis, we provided genetic and molecular evidence for the essential role of PSP1 for embryo and pollen development, and for proper root growth. A metabolomics study indicated that the PPSB affects glycolysis, the Krebs cycle, and the biosynthesis of several amino acids, which suggests that this pathway is an important link connecting metabolism and development. The mechanisms underlying the essential functions of PSP1 are discussed. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish government and the European Union: FEDER/ BFU2012–31519, JdlC to Muñoz-Bertomeu J, FPI fellowship to Rosa-Téllez S, AECI fellowship to Anoman AD; the Valencian Regional Government: PROMETEO/2009/075; and the University of Valencia: “Atracció de Talent” fellowship to Flores-Tornero M. | |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Plant Signaling and Behavior | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Phosphorylated pathway of serine biosynthesis | es_ES |
dc.subject | Phosphoserine phosphatase | es_ES |
dc.subject | Male gametophyte | es_ES |
dc.subject | Root and embryo development | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4161/psb.27104 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-31519/ES/CARACTERIZACION FUNCIONAL DE ENZIMAS CLAVE DEL METABOLISMO PLASTIDIAL EN ARABIDOPSIS Y MAIZ COMO ESTRATEGIA PARA MEJORAR LA CALIDAD NUTRICIONAL DE LAS PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Muñoz Bertomeu, J.; Anoman, AD.; Flores-Tornero, M.; Toujani, W.; Rosa-Tellez, S.; Fernie, AR.; Roje, S.... (2013). The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis. Plant Signaling and Behavior. 8(11):27104-27104. https://doi.org/10.4161/psb.27104 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.4161/psb.27104 | es_ES |
dc.description.upvformatpinicio | 27104 | es_ES |
dc.description.upvformatpfin | 27104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 255037 | es_ES |
dc.identifier.pmid | 24299976 | |
dc.identifier.pmcid | PMC4091574 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cascales-Minana, B., Munoz-Bertomeu, J., Flores-Tornero, M., Anoman, A. D., Pertusa, J., Alaiz, M., … Ros, R. (2013). The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. The Plant Cell, 25(6), 2084-2101. doi:10.1105/tpc.113.112359 | es_ES |
dc.description.references | Kalhan, S. C., & Hanson, R. W. (2012). Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 287(24), 19786-19791. doi:10.1074/jbc.r112.357194 | es_ES |
dc.description.references | Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., … Feijo, J. A. (2011). Glutamate Receptor-Like Genes Form Ca2+ Channels in Pollen Tubes and Are Regulated by Pistil D-Serine. Science, 332(6028), 434-437. doi:10.1126/science.1201101 | es_ES |
dc.description.references | Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: players, partners and origin. Trends in Plant Science, 15(6), 330-336. doi:10.1016/j.tplants.2010.03.006 | es_ES |
dc.description.references | Douce, R., Bourguignon, J., Neuburger, M., & Rébeillé, F. (2001). The glycine decarboxylase system: a fascinating complex. Trends in Plant Science, 6(4), 167-176. doi:10.1016/s1360-1385(01)01892-1 | es_ES |
dc.description.references | Tolbert NE. Photorespiration. In: Davies DD, ed. The Biochemistry of Plants. Academic Press: New York, 1980: 488-525 | es_ES |
dc.description.references | Kleczkowski, L. A., & Givan, C. V. (1988). Serine Formation in Leaves by Mechanisms other than the Glycolate Pathway. Journal of Plant Physiology, 132(6), 641-652. doi:10.1016/s0176-1617(88)80223-2 | es_ES |
dc.description.references | Muñoz-Bertomeu, J., Cascales-Miñana, B., Mulet, J. M., Baroja-Fernández, E., Pozueta-Romero, J., Kuhn, J. M., … Ros, R. (2009). Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis. Plant Physiology, 151(2), 541-558. doi:10.1104/pp.109.143701 | es_ES |
dc.description.references | Muñoz-Bertomeu, J., Cascales-Miñana, B., Irles-Segura, A., Mateu, I., Nunes-Nesi, A., Fernie, A. R., … Ros, R. (2010). The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Viable Pollen Development in Arabidopsis. Plant Physiology, 152(4), 1830-1841. doi:10.1104/pp.109.150458 | es_ES |
dc.description.references | Collakova, E., Goyer, A., Naponelli, V., Krassovskaya, I., Gregory, J. F., Hanson, A. D., & Shachar-Hill, Y. (2008). Arabidopsis 10-Formyl Tetrahydrofolate Deformylases Are Essential for Photorespiration. The Plant Cell, 20(7), 1818-1832. doi:10.1105/tpc.108.058701 | es_ES |
dc.description.references | Srivastava, A. C., Ramos-Parra, P. A., Bedair, M., Robledo-Hernández, A. L., Tang, Y., Sumner, L. W., … Blancaflor, E. B. (2011). The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis. Plant Physiology, 155(3), 1237-1251. doi:10.1104/pp.110.168278 | es_ES |
dc.description.references | Dietrich, C. R., Han, G., Chen, M., Berg, R. H., Dunn, T. M., & Cahoon, E. B. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. The Plant Journal, 54(2), 284-298. doi:10.1111/j.1365-313x.2008.03420.x | es_ES |
dc.description.references | Yamaoka, Y., Yu, Y., Mizoi, J., Fujiki, Y., Saito, K., Nishijima, M., … Nishida, I. (2011). PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. The Plant Journal, 67(4), 648-661. doi:10.1111/j.1365-313x.2011.04624.x | es_ES |
dc.description.references | Timm, S., Mielewczik, M., Florian, A., Frankenbach, S., Dreissen, A., Hocken, N., … Bauwe, H. (2012). High-to-Low CO2 Acclimation Reveals Plasticity of the Photorespiratory Pathway and Indicates Regulatory Links to Cellular Metabolism of Arabidopsis. PLoS ONE, 7(8), e42809. doi:10.1371/journal.pone.0042809 | es_ES |
dc.description.references | Moore, B. (2003). Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling. Science, 300(5617), 332-336. doi:10.1126/science.1080585 | es_ES |
dc.description.references | Guo, L., Devaiah, S. P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W., & Wang, X. (2012). Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress. The Plant Cell, 24(5), 2200-2212. doi:10.1105/tpc.111.094946 | es_ES |
dc.description.references | Bachelor, M. A., Lu, Y., & Owens, D. M. (2011). l-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of l-serine biosynthesis. Journal of Dermatological Science, 63(3), 164-172. doi:10.1016/j.jdermsci.2011.06.001 | es_ES |