- -

Selective catechol-triggered supramolecular gel disassembly

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Selective catechol-triggered supramolecular gel disassembly

Show full item record

Sáez Cases, JA.; Escuder, B.; Miravet, JF. (2010). Selective catechol-triggered supramolecular gel disassembly. Chemical Communications. 46(42):7996-7998. doi:10.1039/c0cc02510k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/69164

Files in this item

Item Metadata

Title: Selective catechol-triggered supramolecular gel disassembly
Author: Sáez Cases, José Antonio Escuder, Beatriu Miravet, Juan F.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Supramolecular gels formed by an isonicotinic acid derivative in toluene are selectively disassembled in the presence of catechol. The results represent a unique example of molecular recognition associated to gel ...[+]
Subjects: Mass Organic Gelators , Anion-Binding , Drug-delivery , Hydrogel , Gelation , Release , Organogels , Transition , Amphiphiles , Entrapment
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c0cc02510k
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c0cc02510k
Project ID:
MICINN/CTQ2006-14984
MICINN/CTQ2009-13961
UJI/P1-1B2009-42
UJI/P1-1B2007-11
Thanks:
The authors thank the Spanish Ministry of Science and Innovation (Grants CTQ2006-14984 and CTQ2009-13961) and Universitat Jaume I (Grants P1-1B2009-42 and P1-1B2007-11) for funding.
Type: Artículo

References

Alarcón, C. de las H., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev., 34(3), 276-285. doi:10.1039/b406727d

Van Esch, J. H., & Feringa, B. L. (2000). New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design. Angewandte Chemie International Edition, 39(13), 2263-2266. doi:10.1002/1521-3773(20000703)39:13<2263::aid-anie2263>3.0.co;2-v

Gronwald, O., Snip, E., & Shinkai, S. (2002). Gelators for organic liquids based on self-assembly: a new facet of supramolecular and combinatorial chemistry. Current Opinion in Colloid & Interface Science, 7(1-2), 148-156. doi:10.1016/s1359-0294(02)00016-x [+]
Alarcón, C. de las H., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev., 34(3), 276-285. doi:10.1039/b406727d

Van Esch, J. H., & Feringa, B. L. (2000). New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design. Angewandte Chemie International Edition, 39(13), 2263-2266. doi:10.1002/1521-3773(20000703)39:13<2263::aid-anie2263>3.0.co;2-v

Gronwald, O., Snip, E., & Shinkai, S. (2002). Gelators for organic liquids based on self-assembly: a new facet of supramolecular and combinatorial chemistry. Current Opinion in Colloid & Interface Science, 7(1-2), 148-156. doi:10.1016/s1359-0294(02)00016-x

George, M., & Weiss, R. G. (2006). Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids†. Accounts of Chemical Research, 39(8), 489-497. doi:10.1021/ar0500923

Hirst, A. R., Escuder, B., Miravet, J. F., & Smith, D. K. (2008). High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angewandte Chemie International Edition, 47(42), 8002-8018. doi:10.1002/anie.200800022

Banerjee, S., Das, R. K., & Maitra, U. (2009). Supramolecular gels ‘in action’. Journal of Materials Chemistry, 19(37), 6649. doi:10.1039/b819218a

Escuder, B., Rodríguez-Llansola, F., & Miravet, J. F. (2010). Supramolecular gels as active media for organic reactions and catalysis. New Journal of Chemistry, 34(6), 1044. doi:10.1039/b9nj00764d

Yagai, S., & Kitamura, A. (2008). Recent advances in photoresponsive supramolecular self-assemblies. Chemical Society Reviews, 37(8), 1520. doi:10.1039/b703092b

Cravotto, G., & Cintas, P. (2009). Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chemical Society Reviews, 38(9), 2684. doi:10.1039/b901840a

Yang, Z., Liang, G., & Xu, B. (2007). Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter, 3(5), 515. doi:10.1039/b700138j

Liu, J., He, P., Yan, J., Fang, X., Peng, J., Liu, K., & Fang, Y. (2008). An Organometallic Super‐Gelator with Multiple‐Stimulus Responsive Properties. Advanced Materials, 20(13), 2508-2511. doi:10.1002/adma.200703195

Chen, J., & McNeil, A. J. (2008). Analyte-Triggered Gelation: Initiating Self-Assembly via Oxidation-Induced Planarization. Journal of the American Chemical Society, 130(49), 16496-16497. doi:10.1021/ja807651a

Wang, C., Chen, Q., Sun, F., Zhang, D., Zhang, G., Huang, Y., … Zhu, D. (2010). Multistimuli Responsive Organogels Based on a New Gelator Featuring Tetrathiafulvalene and Azobenzene Groups: Reversible Tuning of the Gel−Sol Transition by Redox Reactions and Light Irradiation. Journal of the American Chemical Society, 132(9), 3092-3096. doi:10.1021/ja910721s

Estroff, L. A., & Hamilton, A. D. (2000). Effective Gelation of Water Using a Series of Bis-urea Dicarboxylic Acids. Angewandte Chemie, 39(19), 3447-3450. doi:10.1002/1521-3773(20001002)39:19<3447::aid-anie3447>3.0.co;2-x

De Loos, M., Feringa, B. L., & van Esch, J. H. (2005). Design and Application of Self-Assembled Low Molecular Weight Hydrogels. European Journal of Organic Chemistry, 2005(17), 3615-3631. doi:10.1002/ejoc.200400723

Kim, T. H., Seo, J., Lee, S. J., Lee, S. S., Kim, J., & Jung, J. H. (2007). Strongly Fluorescent Hydrogel as a Blue-Emitting Nanomaterial: An Approach toward Understanding Fluorescence−Structure Relationship. Chemistry of Materials, 19(24), 5815-5817. doi:10.1021/cm701880e

Chung, J. W., An, B.-K., & Park, S. Y. (2008). A Thermoreversible and Proton-Induced Gel−Sol Phase Transition with Remarkable Fluorescence Variation. Chemistry of Materials, 20(21), 6750-6755. doi:10.1021/cm8019186

Kar, T., Debnath, S., Das, D., Shome, A., & Das, P. (2009). Organogelation and Hydrogelation of Low-Molecular-Weight Amphiphilic Dipeptides: pH Responsiveness in Phase-Selective Gelation and Dye Removal†. Langmuir, 25(15), 8639-8648. doi:10.1021/la804235e

Fages, F. (2006). Metal Coordination To Assist Molecular Gelation. Angewandte Chemie International Edition, 45(11), 1680-1682. doi:10.1002/anie.200503704

Stanley, C. E., Clarke, N., Anderson, K. M., Elder, J. A., Lenthall, J. T., & Steed, J. W. (2006). Anion binding inhibition of the formation of a helical organogel. Chemical Communications, (30), 3199. doi:10.1039/b606373j

Maeda, H. (2008). Anion-Responsive Supramolecular Gels. Chemistry - A European Journal, 14(36), 11274-11282. doi:10.1002/chem.200801333

Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N., & Steed, J. W. (2008). Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chemical Communications, (23), 2644. doi:10.1039/b804259d

Lloyd, G. O., & Steed, J. W. (2009). Anion-tuning of supramolecular gel properties. Nature Chemistry, 1(6), 437-442. doi:10.1038/nchem.283

Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N., & Steed, J. W. (2010). Metal- and Anion-Binding Supramolecular Gels. Chemical Reviews, 110(4), 1960-2004. doi:10.1021/cr9003067

Deng, W., Yamaguchi, H., Takashima, Y., & Harada, A. (2007). A Chemical-Responsive Supramolecular Hydrogel from Modified Cyclodextrins. Angewandte Chemie International Edition, 46(27), 5144-5147. doi:10.1002/anie.200701272

Yang, Y., Chen, T., Xiang, J., Yan, H., Chen, C., & Wan, L. (2008). Mutual Responsive Hydrazide‐Based Low‐Molecular‐Mass Organic Gelators: Probing Gelation on the Molecular Level. Chemistry - A European Journal, 14(19), 5742-5746. doi:10.1002/chem.200800540

Qiu, Z., Yu, H., Li, J., Wang, Y., & Zhang, Y. (2009). Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand–receptor interaction. Chemical Communications, (23), 3342. doi:10.1039/b822840j

Taira, T., Suzaki, Y., & Osakada, K. (2010). Hydrogels Composed of Organic Amphiphiles and α-Cyclodextrin: Supramolecular Networks of Their Pseudorotaxanes in Aqueous Media. Chemistry - A European Journal, 16(22), 6518-6529. doi:10.1002/chem.200903315

Chen, X., Huang, Z., Chen, S.-Y., Li, K., Yu, X.-Q., & Pu, L. (2010). Enantioselective Gel Collapsing: A New Means of Visual Chiral Sensing. Journal of the American Chemical Society, 132(21), 7297-7299. doi:10.1021/ja102480t

Escuder, B., Miravet, J. F., & Sáez, J. A. (2008). Molecular recognition through divalent interactions with a self-assembled fibrillar network of a supramolecular organogel. Organic & Biomolecular Chemistry, 6(23), 4378. doi:10.1039/b812520a

Tsekova, D. S., Sáez, J. A., Escuder, B., & Miravet, J. F. (2009). Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matter, 5(19), 3727. doi:10.1039/b902516b

Escuder, B., Martí, S., & Miravet, J. F. (2005). Organogel Formation by Coaggregation of Adaptable Amidocarbamates and Their Tetraamide Analogues. Langmuir, 21(15), 6776-6787. doi:10.1021/la050655j

Hunter, C. A., & Sanders, J. K. M. (1990). The nature of .pi.-.pi. interactions. Journal of the American Chemical Society, 112(14), 5525-5534. doi:10.1021/ja00170a016

Vintiloiu, A., & Leroux, J.-C. (2008). Organogels and their use in drug delivery — A review. Journal of Controlled Release, 125(3), 179-192. doi:10.1016/j.jconrel.2007.09.014

Branco, M. C., & Schneider, J. P. (2009). Self-assembling materials for therapeutic delivery. Acta Biomaterialia, 5(3), 817-831. doi:10.1016/j.actbio.2008.09.018

Friggeri, A., Feringa, B. L., & van Esch, J. (2004). Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. Journal of Controlled Release, 97(2), 241-248. doi:10.1016/j.jconrel.2004.03.012

Yang, Z., Gu, H., Zhang, Y., Wang, L., & Xu, B. (2004). Small molecule hydrogels based on a class of antiinflammatory agents. Chemical Communications, (2), 208. doi:10.1039/b310574a

Van Bommel, K. J. C., Stuart, M. C. A., Feringa, B. L., & van Esch, J. (2005). Two-stage enzyme mediated drug release from LMWG hydrogels. Organic & Biomolecular Chemistry, 3(16), 2917. doi:10.1039/b507157g

Karinaga, R., Jeong, Y., Shinkai, S., Kaneko, K., & Sakurai, K. (2005). Inclusion of DNA into Organic Gelator Fibers Made of Amphipathic Molecules and Its Controlled Release. Langmuir, 21(21), 9398-9401. doi:10.1021/la0515524

Vemula, P. K., Li, J., & John, G. (2006). Enzyme Catalysis:  Tool to Make and Break Amygdalin Hydrogelators from Renewable Resources:  A Delivery Model for Hydrophobic Drugs. Journal of the American Chemical Society, 128(27), 8932-8938. doi:10.1021/ja062650u

Matsumoto, S., Yamaguchi, S., Ueno, S., Komatsu, H., Ikeda, M., Ishizuka, K., … Hamachi, I. (2008). Photo Gel-Sol/Sol-Gel Transition and Its Patterning of a Supramolecular Hydrogel as Stimuli-Responsive Biomaterials. Chemistry - A European Journal, 14(13), 3977-3986. doi:10.1002/chem.200701904

Shome, A., Debnath, S., & Das, P. K. (2008). Head Group Modulated pH-Responsive Hydrogel of Amino Acid-Based Amphiphiles:  Entrapment and Release of Cytochromecand Vitamin B12. Langmuir, 24(8), 4280-4288. doi:10.1021/la704024p

Liang, G., Yang, Z., Zhang, R., Li, L., Fan, Y., Kuang, Y., … Xu, B. (2009). Supramolecular Hydrogel of ad-Amino Acid Dipeptide for Controlled Drug Release in Vivo†. Langmuir, 25(15), 8419-8422. doi:10.1021/la804271d

Adhikari, B., Palui, G., & Banerjee, A. (2009). Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 5(18), 3452. doi:10.1039/b905985g

Panda, J. J., Mishra, A., Basu, A., & Chauhan, V. S. (2008). Stimuli Responsive Self-Assembled Hydrogel of a Low Molecular Weight Free Dipeptide with Potential for Tunable Drug Delivery. Biomacromolecules, 9(8), 2244-2250. doi:10.1021/bm800404z

Feng, G., Xiong, Y., Wang, H., & Yang, Y. (2009). Gelation of microemulsions and release behavior of sodium salicylate from gelled microemulsions. European Journal of Pharmaceutics and Biopharmaceutics, 71(2), 297-302. doi:10.1016/j.ejpb.2008.08.014

Komatsu, H., Matsumoto, S., Tamaru, S., Kaneko, K., Ikeda, M., & Hamachi, I. (2009). Supramolecular Hydrogel Exhibiting Four Basic Logic Gate Functions To Fine-Tune Substance Release. Journal of the American Chemical Society, 131(15), 5580-5585. doi:10.1021/ja8098239

Aguzzi, A., & O’Connor, T. (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature Reviews Drug Discovery, 9(3), 237-248. doi:10.1038/nrd3050

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record