Mostrar el registro sencillo del ítem
dc.contributor.author | Bernal García, Álvaro | es_ES |
dc.contributor.author | Román Moltó, José Enrique | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Ginestar Peiro, Damián | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2016-09-12T14:52:31Z | |
dc.date.available | 2016-09-12T14:52:31Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0022-3131 | |
dc.identifier.uri | http://hdl.handle.net/10251/69282 | |
dc.description.abstract | Heterogeneous nuclear reactors require numerical methods to solve the neutron diffusion equation (NDE) to obtain the neutron flux distribution inside them, by discretizing the heterogeneous geometry in a set of homogeneous regions. This discretization requires additional equations at the inner faces of two adjacent cells: neutron flux and current continuity, which imply an excess of equations. The finite volume method (FVM) is suitable to be applied to NDE, because it can be easily applied to any mesh and it is typically used in the transport equations due to the conservation of the transported quantity within the volume. However, the gradient and face-averaged values in the FVM are typically calculated as a function of the cell-averaged values of adjacent cells. So, if the materials of the adjacent cells are different, the neutron current condition could not be accomplished. Therefore, a polynomial expansion of the neutron flux is developed in each cell for assuring the accomplishment of the flux and current continuity and calculating both analytically. In this polynomial expansion, the polynomial terms for each cell were assigned previously and the constant coefficients are determined by solving the eigenvalue problem with SLEPc. A sensitivity analysis for determining the best set of polynomial terms is performed. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; the Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P], [project number ENE2012-34585]; the Generalitat Valenciana [project number PROMETEOII/2014/008]; the Universitat Politecnica de Valencia [project number UPPTE/2012/118]; and the Spanish Ministerio de Economia y Competitividad [project number TIN2013-41049-P]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Nuclear Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Neutron diffusion equation | es_ES |
dc.subject | Finite volume method | es_ES |
dc.subject | Polynomial expansion | es_ES |
dc.subject | Steady state | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Development of a Finite Volume Inter-cell Polynomial Expansion Method for the Neutron Diffusion Equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00223131.2015.1102661 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2012-34585/ES/Desarrollo de una plataforma multifísica de altas prestaciones para simulaciones Termohidráulico-Neutrónicas en ingeniería nuclear/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//UPPTE%2F2012%2F118/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Bernal García, Á.; Román Moltó, JE.; Miró Herrero, R.; Ginestar Peiro, D.; Verdú Martín, GJ. (2016). Development of a Finite Volume Inter-cell Polynomial Expansion Method for the Neutron Diffusion Equation. Journal of Nuclear Science and Technology. 53(8):1212-1223. https://doi.org/10.1080/00223131.2015.1102661 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00223131.2015.1102661 | es_ES |
dc.description.upvformatpinicio | 1212 | es_ES |
dc.description.upvformatpfin | 1223 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 308328 | es_ES |
dc.identifier.eissn | 1881-1248 | |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |