- -

Application of Hurst exponents to assess atrial reverse remodeling in paroxysmal atrial fibrillation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Application of Hurst exponents to assess atrial reverse remodeling in paroxysmal atrial fibrillation

Show simple item record

Files in this item

dc.contributor.author Julián Seguí, Matilde es_ES
dc.contributor.author Alcaraz, Raul es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2016-09-19T14:45:58Z
dc.date.available 2016-09-19T14:45:58Z
dc.date.issued 2015-11
dc.identifier.issn 0967-3334
dc.identifier.uri http://hdl.handle.net/10251/70113
dc.description.abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Although its termination mechanisms are not still completely known, previous works have reported significant electrocardiographic differences between immediately and non-immediately terminating episodes of paroxysmal AF (PAF). However, none studied how long these differences still hold as we move backward in time. The present work studies a time interval long enough to identify earlier signs forecasting atrial reverse remodeling that will provoke spontaneous AF termination. Reverse remodeling was estimated by measuring AF organisation with the second-order generalised Hurst exponent, H(2), which provided the highest accuracy. Organisation is associated with the number of simultaneous reentries in the atria, which plays a key role in reverse remodeling, thus causing arrhythmia termination. The computation of H(2) depended on two critical parameters: the analysed interval length (L) and the maximum search window for self-similarities (tau(max)). A study with 660 combinations on these two parameters was performed together with the sampling frequency (f(s)) of the recording. The results reported that optimal computational parameters are L = 15 s, tau(max) = 20 milliseconds and f(s) = 1024 Hz. A statistically significant organisation increase was observed during the last 2 min before AF termination, thus suggesting that reverse remodeling only occurs very close to the termination event. es_ES
dc.description.sponsorship This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Atrial remodeling es_ES
dc.subject ECG es_ES
dc.subject Organisation es_ES
dc.subject Hurst exponents es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Application of Hurst exponents to assess atrial reverse remodeling in paroxysmal atrial fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/36/11/2231
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII-2014-026-P/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Julián Seguí, M.; Alcaraz, R.; Rieta, JJ. (2015). Application of Hurst exponents to assess atrial reverse remodeling in paroxysmal atrial fibrillation. Physiological Measurement. 36(11):2231-2246. https://doi.org/10.1088/0967-3334/36/11/2231 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0967-3334/36/11/2231 es_ES
dc.description.upvformatpinicio 2231 es_ES
dc.description.upvformatpfin 2246 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 302093 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Computer Methods and Programs in Biomedicine, 93(2), 148-154. doi:10.1016/j.cmpb.2008.09.001 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 es_ES
dc.description.references Allessie, M. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research, 54(2), 230-246. doi:10.1016/s0008-6363(02)00258-4 es_ES
dc.description.references Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 es_ES
dc.description.references Bollmann, A., Kanuru, N., McTeague, K., Walter, P., DeLurgio, D., & Langberg, J. (1998). Frequency Analysis of Human Atrial Fibrillation Using the Surface Electrocardiogram and Its Response to Ibutilide. The American Journal of Cardiology, 81(12), 1439-1445. doi:10.1016/s0002-9149(98)00210-0 es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510 es_ES
dc.description.references Chiarugi, F., Varanini, M., Cantini, F., Conforti, F., & Vrouchos, G. (2007). Noninvasive ECG as a Tool for Predicting Termination of Paroxysmal Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 54(8), 1399-1406. doi:10.1109/tbme.2007.890741 es_ES
dc.description.references Di Matteo, T., Aste, T., & Dacorogna, M. M. (2003). Scaling behaviors in differently developed markets. Physica A: Statistical Mechanics and its Applications, 324(1-2), 183-188. doi:10.1016/s0378-4371(02)01996-9 es_ES
dc.description.references Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 es_ES
dc.description.references Faes, L., Nollo, G., Antolini, R., Gaita, F., & Ravelli, F. (2002). A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Transactions on Biomedical Engineering, 49(12), 1504-1513. doi:10.1109/tbme.2002.805472 es_ES
dc.description.references Fujiki, A., Sakabe, M., Nishida, K., Mizumaki, K., & Inoue, H. (2003). Role of Fibrillation Cycle Length in Spontaneous and Drug-Induced Termination of Human Atrial Fibrillation. Circulation Journal, 67(5), 391-395. doi:10.1253/circj.67.391 es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d es_ES
dc.description.references Gillis, A. M., Krahn, A. D., Skanes, A. C., & Nattel, S. (2013). Management of Atrial Fibrillation in the Year 2033: New Concepts, Tools, and Applications Leading to Personalized Medicine. Canadian Journal of Cardiology, 29(10), 1141-1146. doi:10.1016/j.cjca.2013.07.006 es_ES
dc.description.references Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 es_ES
dc.description.references Grech, D., & Mazur, Z. (2004). Can one make any crash prediction in finance using the local Hurst exponent idea? Physica A: Statistical Mechanics and its Applications, 336(1-2), 133-145. doi:10.1016/j.physa.2004.01.018 es_ES
dc.description.references Holm, M. (1998). Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research, 38(1), 69-81. doi:10.1016/s0008-6363(97)00289-7 es_ES
dc.description.references Husser, D., Cannom, D. S., Bhandari, A. K., Stridh, M., Sörnmo, L., Olsson, S. B., & Bollmann, A. (2007). Electrocardiographic characteristics of fibrillatory waves in new-onset atrial fibrillation. EP Europace, 9(8), 638-642. doi:10.1093/europace/eum074 es_ES
dc.description.references Ihlen, E. A. F. (2012). Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00141 es_ES
dc.description.references Julián, M., Alcaraz, R., & Rieta, J. J. (2014). Comparative assessment of nonlinear metrics to quantify organization-related events in surface electrocardiograms of atrial fibrillation. Computers in Biology and Medicine, 48, 66-76. doi:10.1016/j.compbiomed.2014.02.010 es_ES
dc.description.references Lankveld, T. A. R., Zeemering, S., Crijns, H. J. G. M., & Schotten, U. (2014). The ECG as a tool to determine atrial fibrillation complexity. Heart, 100(14), 1077-1084. doi:10.1136/heartjnl-2013-305149 es_ES
dc.description.references Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical Image Analysis, 13(4), 634-649. doi:10.1016/j.media.2009.05.003 es_ES
dc.description.references Shah, D. (2010). Is gold cooler than platinum-iridium? Europace, 13(1), 9-10. doi:10.1093/europace/euq389 es_ES
dc.description.references Manimaran, P., Panigrahi, P. K., & Parikh, J. C. (2005). Wavelet analysis and scaling properties of time series. Physical Review E, 72(4). doi:10.1103/physreve.72.046120 es_ES
dc.description.references Markides, V. (2003). Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment. Heart, 89(8), 939-943. doi:10.1136/heart.89.8.939 es_ES
dc.description.references Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial Remodeling and Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 1(1), 62-73. doi:10.1161/circep.107.754564 es_ES
dc.description.references Ndrepepa, G., Weber, S., Karch, M. R., Schneider, M. A. ., Schreieck, J. ürge., Schömig, A., & Schmitt, C. (2002). Electrophysiologic characteristics of the spontaneous onset and termination of atrial fibrillation. The American Journal of Cardiology, 90(11), 1215-1220. doi:10.1016/s0002-9149(02)02837-0 es_ES
dc.description.references Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 es_ES
dc.description.references Petrutiu, S., Sahakian, A. V., & Swiryn, S. (2007). Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. EP Europace, 9(7), 466-470. doi:10.1093/europace/eum096 es_ES
dc.description.references Rahman, F., Kwan, G. F., & Benjamin, E. J. (2014). Global epidemiology of atrial fibrillation. Nature Reviews Cardiology, 11(11), 639-654. doi:10.1038/nrcardio.2014.118 es_ES
dc.description.references RAVELLI, F., MASÈ, M., GRECO, M. D., FAES, L., & DISERTORI, M. (2007). Deterioration of Organization in the First Minutes of Atrial Fibrillation: A Beat-to-Beat Analysis of Cycle Length and Wave Similarity. Journal of Cardiovascular Electrophysiology, 18(1), 60-65. doi:10.1111/j.1540-8167.2006.00620.x es_ES
dc.description.references Ropella, K. M., Sahakian, A. V., Baerman, J. M., & Swiryn, S. (1988). Effects of procainamide on intra-atrial [corrected] electrograms during atrial fibrillation: implications [corrected] for detection algorithms. Circulation, 77(5), 1047-1054. doi:10.1161/01.cir.77.5.1047 es_ES
dc.description.references Sun, R., & Wang, Y. (2008). Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Medical Engineering & Physics, 30(9), 1105-1111. doi:10.1016/j.medengphy.2008.01.008 es_ES
dc.description.references Tso, H.-W., Lin, Y.-J., Tai, C.-T., Chen, S.-A., & Kao, T. (2012). Characteristics of Fibrillatory Activities During Spontaneous Termination of Paroxysmal Atrial Fibrillation: New Insight From High-Density Right Atrium Frequency Mapping. Canadian Journal of Cardiology, 28(1), 87-94. doi:10.1016/j.cjca.2011.08.119 es_ES
dc.description.references Uldry, L., Jacquemet, V., Virag, N., Kappenberger, L., & Vesin, J.-M. (2012). Estimating the time scale and anatomical location of atrial fibrillation spontaneous termination in a biophysical model. Medical & Biological Engineering & Computing, 50(2), 155-163. doi:10.1007/s11517-011-0859-3 es_ES
dc.description.references Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954 es_ES
dc.description.references Yoshida, K., Chugh, A., Good, E., Crawford, T., Myles, J., Veerareddy, S., … Oral, H. (2010). A critical decrease in dominant frequency and clinical outcome after catheter ablation of persistent atrial fibrillation. Heart Rhythm, 7(3), 295-302. doi:10.1016/j.hrthm.2009.11.024 es_ES


This item appears in the following Collection(s)

Show simple item record