- -

A fast sparse block circulant matrix vector product

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A fast sparse block circulant matrix vector product

Mostrar el registro completo del ítem

Romero Alcalde, E.; Tomás Domínguez, AE.; Soriano Asensi, A.; Blanquer Espert, I. (2014). A fast sparse block circulant matrix vector product. En Euro-Par 2014 Parallel Processing. Springer. 548-559. doi:10.1007/978-3-319-09873-9_46

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70427

Ficheros en el ítem

Metadatos del ítem

Título: A fast sparse block circulant matrix vector product
Autor: Romero Alcalde, Eloy Tomás Domínguez, Andrés Enrique Soriano Asensi, Antonio Blanquer Espert, Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
In the context of computed tomography (CT), iterative image reconstruction techniques are gaining attention because high-quality images are becoming computationally feasible. They involve the solution of large systems of ...[+]
Palabras clave: Circulant matrix , Sparse matrix , Matrix vector product , GPU , Multi-core , Computed tomography
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-319-09872-2
Fuente:
Euro-Par 2014 Parallel Processing. (issn: 0302-9743 ) (eissn: 1611-3349 )
DOI: 10.1007/978-3-319-09873-9_46
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-319-09873-9_46
Título del congreso: 20th International European Conference on Parallel and Distributed Computing (Euro-Par 2014)
Lugar del congreso: Porto, Portugal
Fecha congreso: 2014-08-25
Serie: Lecture Notes in Computer Science;8632
Tipo: Capítulo de libro Comunicación en congreso

References

Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal, X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam ct. Physics in Medicine and Biology 55, 6575–6599 (2010)

Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library version 0.4.0 (2014), http://cusplibrary.github.com/

Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the Optical Society of America 1, 612–619 (1984) [+]
Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal, X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam ct. Physics in Medicine and Biology 55, 6575–6599 (2010)

Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library version 0.4.0 (2014), http://cusplibrary.github.com/

Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the Optical Society of America 1, 612–619 (1984)

Ganine, V., Legrand, M., Michalska, H., Pierre, C.: A sparse preconditioned iterative method for vibration analysis of geometrically mistuned bladed disks. Computers & Structures 87(5-6), 342–354 (2009)

Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study. American Journal of Roentgenology 193, 764–771 (2009)

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels. International Journal of High Performance Computing Applications 18(1), 135–158 (2004)

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/

Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures. Acta Mechanica 217(1-2), 51–62 (2011)

Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplication using index and value compression. In: Proceedings of the 5th Conference on Computing Frontiers, CF 2008, pp. 87–96. ACM, New York (2008)

Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix–vector product on scalar multi-core CPUs. Parallel Computing 36(4), 181–198 (2010)

Lee, B., Vuduc, R., Demmel, J., Yelick, K.: Performance models for evaluation and automatic tuning of symmetric sparse matrix-vector multiply. In: International Conference on Parallel Processing, ICPP 2004, vol. 1, pp. 169–176 (2004)

Leroux, J.D., Selivanov, V., Fontaine, R., Lecomte, R.: Accelerated iterative image reconstruction methods based on block-circulant system matrix derived from a cylindrical image representation. In: Nuclear Science Symposium Conference Record, NSS 2007, vol. 4, pp. 2764–2771. IEEE (2007)

NVIDIA: CUSPARSE library (2014), https://developer.nvidia.com/cusparse

Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 123009 (2008)

Rodríguez-Alvarez, M.J., Soriano, A., Iborra, A., Sánchez, F., González, A.J., Conde, P., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: Expectation maximization (EM) algorithms using polar symmetries for computed tomography CT image reconstruction. Computers in Biology and Medicine 43(8), 1053–1061 (2013)

Sheep, L., Vardi, Y.: Maximum likelihood reconstruction for emmision tomography. IEEE Transactions on Medical Imaging 1, 113–122 (1982)

Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in Medicine and Biology 53, 4777–4807 (2008)

Soriano, A., Rodríguez-Alvarez, M.J., Iborra, A., Sánchez, F., Carles, M., Conde, P., González, A.J., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: EM tomographic image reconstruction using polar voxels. Journal of Instrumentation 8, C01004 (2013)

Thibaudeau, C., Leroux, J.D., Pratte, J.F., Fontaine, R., Lecomte, R.: Cylindrical and spherical ray-tracing for ct iterative reconstruction. In: 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 4378–4381 (2011)

Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2005)

Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Computing 35(3), 178–194 (2009)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem