- -

Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lemoine, Melissa es_ES
dc.contributor.author Lucek, Kay es_ES
dc.contributor.author Perrier, Charles es_ES
dc.contributor.author Saladin, Verena es_ES
dc.contributor.author Adriaensen, Frank es_ES
dc.contributor.author Barba Campos, Emilio es_ES
dc.contributor.author Belda Pérez, Eduardo Jorge es_ES
dc.contributor.author Charmantier, Anne es_ES
dc.contributor.author Cichón, Mariusz es_ES
dc.contributor.author Eeva, Tapio es_ES
dc.contributor.author Grégoire, Arnaud es_ES
dc.contributor.author Hinde, Camilla A. es_ES
dc.contributor.author Johnsen, Arild es_ES
dc.contributor.author Komdeur, Jan es_ES
dc.contributor.author Mänd, Raivo es_ES
dc.date.accessioned 2016-09-26T13:59:49Z
dc.date.available 2016-09-26T13:59:49Z
dc.date.issued 2016-07
dc.identifier.issn 0024-4066
dc.identifier.uri http://hdl.handle.net/10251/70440
dc.description.abstract Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species - the great tit Parus major - at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (F-ST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales. (C) 2016 The Linnean Society of London es_ES
dc.description.sponsorship The study was funded by the Swiss National Science Foundation (3100A0-102017 to HR, P2BEP3_152103 to KL and PMPDP3_151361/161858 to ML). We thank L. Gustafsson and J. Forsman who kindly allowed us to use their nest boxes. We gratefully thank E. Bezault, L. Cornetti and two anonymous reviewers for valuable advice on genetic analyses and helpful comments on the manuscript. All samples were collected under licenses of national authorities and financially supported by the Academy of Finland grant (to NP and 265859 to TE), the Netherland Organisation for Scientific Research (NWO-VICI 86503003 to JK and NWO-VICI to MV), the Netherlands Genomics Initiative (Horizon grant to KvO), the Hungarian Scientific Research Fund (OTKA 75618 to JT), the Estonian Ministry of Education and Science (IUT 34-8 to RM), the OSU-OREME, the Spanish Ministry of Education and Science (CGL2010-21933-CO-02 to EB), the Portuguese Foundation for Science and Technology (SFRH/BD/13594/2003 to ACN) and the Agence Nationale de la Recherche (ANR-08-JCJC-0041-01 to BD). en_EN
dc.language Inglés es_ES
dc.publisher Linnean Society of London es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Biological Journal of the Linnean Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject F-statistics es_ES
dc.subject Isolation-by-distance es_ES
dc.subject Latitude es_ES
dc.subject Microsatellites es_ES
dc.subject Parus major es_ES
dc.subject Population genetic structure es_ES
dc.subject Winter severity es_ES
dc.subject.classification ZOOLOGIA es_ES
dc.title Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/bij.12745
dc.relation.projectID info:eu-repo/grantAgreement/AKA//265859/FI/Pollution-related vitamin and calcium deficiency in birds/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NWO//865.03.003/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F13594%2F2003/PT/
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//PMPDP3_161858/CH/Quantifying the roles of ecology and geography in genetic differentiation along altitudinal gradients: Insights from Borrelia, ticks and rodents in the Swiss Alps/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//PMPDP3_151361/CH/Neutral genetic differentiation along an altitudinal gradient in Ixodes ricinus: Identifying biotic and abiotic factors which lead to reproductive isolation of tick populations/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//P2BEP3_152103/CH/The role of recombination and genomic architecture during speciation - a case study using Timema stick insects/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//31003A-102017/CH/Functional analysis and evolution of host-parasite interactions in a natural vertebrate model system/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-08-JCJC-0041/FR/Evolutionary Potential In Changing Environments - a quantitative genetic approach/EPICE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OTKA//75618/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/HM//IUT 34-8/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-21933-C02-02/ES/EFECTOS DEL CALENTAMIENTO GLOBAL SOBRE LA FECUNDIDAD Y LA SUPERVIVENCIA DE PASERIFORMES MEDITERRANEOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Lemoine, M.; Lucek, K.; Perrier, C.; Saladin, V.; Adriaensen, F.; Barba Campos, E.; Belda Pérez, EJ.... (2016). Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biological Journal of the Linnean Society. 118(3):668-685. https://doi.org/10.1111/bij.12745 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/bij.12745 es_ES
dc.description.upvformatpinicio 668 es_ES
dc.description.upvformatpfin 685 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 118 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 301781 es_ES
dc.identifier.eissn 1095-8312
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Academy of Finland es_ES
dc.contributor.funder Estonian Ministry of Science and Education es_ES
dc.contributor.funder Hungarian Scientific Research Fund es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.contributor.funder Netherlands Genomics Initiative es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Ahola, M. P., Laaksonen, T., Eeva, T., & Lehikoinen, E. (2009). Great tits lay increasingly smaller clutches than selected for: a study of climate- and density-related changes in reproductive traits. Journal of Animal Ecology, 78(6), 1298-1306. doi:10.1111/j.1365-2656.2009.01596.x es_ES
dc.description.references Antoniazza, S., Kanitz, R., Neuenschwander, S., Burri, R., Gaigher, A., Roulin, A., & Goudet, J. (2014). Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl. Molecular Ecology, 23(22), 5508-5523. doi:10.1111/mec.12957 es_ES
dc.description.references Balbontín, J., Møller, A. P., Hermosell, I. G., Marzal, A., Reviriego, M., & de Lope, F. (2009). Geographic patterns of natal dispersal in barn swallows Hirundo rustica from Denmark and Spain. Behavioral Ecology and Sociobiology, 63(8), 1197-1205. doi:10.1007/s00265-009-0752-3 es_ES
dc.description.references BJÖRKLUND, M., RUIZ, I., & SENAR, J. C. (2009). Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city. Biological Journal of the Linnean Society, 99(1), 9-19. doi:10.1111/j.1095-8312.2009.01335.x es_ES
dc.description.references Boeye, J., Travis, J. M. J., Stoks, R., & Bonte, D. (2012). More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance. Evolutionary Applications, 6(2), 353-364. doi:10.1111/eva.12004 es_ES
dc.description.references Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2010). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35. doi:10.1007/s00265-010-1029-6 es_ES
dc.description.references Caswell, H., Lensink, R., & Neubert, M. G. (2003). DEMOGRAPHY AND DISPERSAL: LIFE TABLE RESPONSE EXPERIMENTS FOR INVASION SPEED. Ecology, 84(8), 1968-1978. doi:10.1890/02-0100 es_ES
dc.description.references Charmantier, A., Doutrelant, C., Dubuc-Messier, G., Fargevieille, A., & Szulkin, M. (2015). Mediterranean blue tits as a case study of local adaptation. Evolutionary Applications, 9(1), 135-152. doi:10.1111/eva.12282 es_ES
dc.description.references CHEN, C., DURAND, E., FORBES, F., & FRANÇOIS, O. (2007). Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7(5), 747-756. doi:10.1111/j.1471-8286.2007.01769.x es_ES
dc.description.references Frenne, P., Graae, B. J., Rodríguez‐Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., … Verheyen, K. (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology, 101(3), 784-795. doi:10.1111/1365-2745.12074 es_ES
dc.description.references Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2013). NeEstimatorv2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209-214. doi:10.1111/1755-0998.12157 es_ES
dc.description.references EVANNO, G., REGNAUT, S., & GOUDET, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611-2620. doi:10.1111/j.1365-294x.2005.02553.x es_ES
dc.description.references Forsman, J. T., & Mönkkönen, M. (2003). The role of climate in limiting European resident bird populations. Journal of Biogeography, 30(1), 55-70. doi:10.1046/j.1365-2699.2003.00812.x es_ES
dc.description.references Fronhofer, E. A., Stelz, J. M., Lutz, E., Poethke, H. J., & Bonte, D. (2014). SPATIALLY CORRELATED EXTINCTIONS SELECT FOR LESS EMIGRATION BUT LARGER DISPERSAL DISTANCES IN THE SPIDER MITETETRANYCHUS URTICAE. Evolution, 68(6), 1838-1844. doi:10.1111/evo.12339 es_ES
dc.description.references Garant, D., Kruuk, L. E. B., McCleery, R. H., & Sheldon, B. C. (2004). Evolution in a Changing Environment: A Case Study with Great Tit Fledging Mass. The American Naturalist, 164(5), E115-E129. doi:10.1086/424764 es_ES
dc.description.references Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H., & Sheldon, B. C. (2005). Evolution driven by differential dispersal within a wild bird population. Nature, 433(7021), 60-65. doi:10.1038/nature03051 es_ES
dc.description.references Garroway, C. J., Radersma, R., Sepil, I., Santure, A. W., De Cauwer, I., Slate, J., & Sheldon, B. C. (2013). FINE-SCALE GENETIC STRUCTURE IN A WILD BIRD POPULATION: THE ROLE OF LIMITED DISPERSAL AND ENVIRONMENTALLY BASED SELECTION AS CAUSAL FACTORS. Evolution, 67(12), 3488-3500. doi:10.1111/evo.12121 es_ES
dc.description.references Goudet, J. (1995). FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity, 86(6), 485-486. doi:10.1093/oxfordjournals.jhered.a111627 es_ES
dc.description.references Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907-913. doi:10.1038/35016000 es_ES
dc.description.references Huld, T. A., Šúri, M., Dunlop, E. D., & Micale, F. (2006). Estimating average daytime and daily temperature profiles within Europe. Environmental Modelling & Software, 21(12), 1650-1661. doi:10.1016/j.envsoft.2005.07.010 es_ES
dc.description.references Husby, A., Visser, M. E., & Kruuk, L. E. B. (2011). Speeding Up Microevolution: The Effects of Increasing Temperature on Selection and Genetic Variance in a Wild Bird Population. PLoS Biology, 9(2), e1000585. doi:10.1371/journal.pbio.1000585 es_ES
dc.description.references Hutchison, D. W., & Templeton, A. R. (1999). Correlation of Pairwise Genetic and Geographic Distance Measures: Inferring the Relative Influences of Gene Flow and Drift on the Distribution of Genetic Variability. Evolution, 53(6), 1898. doi:10.2307/2640449 es_ES
dc.description.references JOHNSEN, A., ANDERSSON, S., FERNANDEZ, J. G., KEMPENAERS, B., PAVEL, V., QUESTIAU, S., … LIFJELD, J. T. (2006). Molecular and phenotypic divergence in the bluethroat (Luscinia svecica) subspecies complex. Molecular Ecology, 15(13), 4033-4047. doi:10.1111/j.1365-294x.2006.03075.x es_ES
dc.description.references Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94 es_ES
dc.description.references Junge, C., Vøllestad, L. A., Barson, N. J., Haugen, T. O., Otero, J., Sætre, G.-P., … Primmer, C. R. (2011). Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus). Heredity, 106(3), 460-471. doi:10.1038/hdy.2010.160 es_ES
dc.description.references KOIZUMI, I., YAMAMOTO, S., & MAEKAWA, K. (2006). Decomposed pairwise regression analysis of genetic and geographic distances reveals a metapopulation structure of stream-dwelling Dolly Varden charr. Molecular Ecology, 15(11), 3175-3189. doi:10.1111/j.1365-294x.2006.03019.x es_ES
dc.description.references Kokko, H. (2011). Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos, 120(12), 1826-1837. doi:10.1111/j.1600-0706.2011.19438.x es_ES
dc.description.references Kvist, L., Ruokonen, M., Lumme, J., & Orell, M. (1999). The colonization history and present-day population structure of the European great tit (Parus major major). Heredity, 82(5), 495-502. doi:10.1038/sj.hdy.6885130 es_ES
dc.description.references Kvist, L., Martens, J., Higuchi, H., Nazarenko, A. A., Valchuk, O. P., & Orell, M. (2003). Evolution and genetic structure of the great tit ( Parus major ) complex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1523), 1447-1454. doi:10.1098/rspb.2002.2321 es_ES
dc.description.references Kvist, L., Viiri, K., Dias, P. C., Rytkönen, S., & Orell, M. (2004). Glacial history and colonization of Europe by the blue titParus caeruleus. Journal of Avian Biology, 35(4), 352-359. doi:10.1111/j.0908-8857.2004.03297.x es_ES
dc.description.references KVIST, L., ARBABI, T., PÄCKERT, M., ORELL, M., & MARTENS, J. (2007). Population differentiation in the marginal populations of the great tit (Paridae: Parus major). Biological Journal of the Linnean Society, 90(2), 201-210. doi:10.1111/j.1095-8312.2007.00726.x es_ES
dc.description.references Latch, E. K., Dharmarajan, G., Glaubitz, J. C., & Rhodes, O. E. (2006). Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conservation Genetics, 7(2), 295-302. doi:10.1007/s10592-005-9098-1 es_ES
dc.description.references LEHTONEN, P. K., LAAKSONEN, T., ARTEMYEV, A. V., BELSKII, E., BOTH, C., BUREŠ, S., … PRIMMER, C. R. (2009). Geographic patterns of genetic differentiation and plumage colour variation are different in the pied flycatcher (Ficedula hypoleuca). Molecular Ecology, 18(21), 4463-4476. doi:10.1111/j.1365-294x.2009.04364.x es_ES
dc.description.references Lehtonen, P. K., Laaksonen, T., Artemyev, A. V., Belskii, E., Berg, P. R., Both, C., … Primmer, C. R. (2011). Candidate genes for colour and vision exhibit signals of selection across the pied flycatcher (Ficedula hypoleuca) breeding range. Heredity, 108(4), 431-440. doi:10.1038/hdy.2011.93 es_ES
dc.description.references Loiselle, B. A., Sork, V. L., Nason, J., & Graham, C. (1995). Spatial Genetic Structure of a Tropical Understory Shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 82(11), 1420. doi:10.2307/2445869 es_ES
dc.description.references Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography, 28(3), 403-416. doi:10.1111/j.0906-7590.2005.04073.x es_ES
dc.description.references Mazerolle MJ 2015 AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c) es_ES
dc.description.references MEIRMANS, P. G., & HEDRICK, P. W. (2010). Assessing population structure: FST and related measures. Molecular Ecology Resources, 11(1), 5-18. doi:10.1111/j.1755-0998.2010.02927.x es_ES
dc.description.references MEIRMANS, P. G., & VAN TIENDEREN, P. H. (2004). genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4(4), 792-794. doi:10.1111/j.1471-8286.2004.00770.x es_ES
dc.description.references Miller, M. P., Mullins, T. D., Parrish, J. W., Walters, J. R., & Haig, S. M. (2012). Variation in Migratory Behavior Influences Regional Genetic Diversity and Structure among American Kestrel Populations (Falco sparverius) in North America. Journal of Heredity, 103(4), 503-514. doi:10.1093/jhered/ess024 es_ES
dc.description.references MUSIANI, M., LEONARD, J. A., CLUFF, H. D., GATES, C. C., MARIANI, S., PAQUET, P. C., … WAYNE, R. K. (2007). Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Molecular Ecology, 16(19), 4149-4170. doi:10.1111/j.1365-294x.2007.03458.x es_ES
dc.description.references Nathan, R., Perry, G., Cronin, J. T., Strand, A. E., & Cain, M. L. (2003). Methods for estimating long-distance dispersal. Oikos, 103(2), 261-273. doi:10.1034/j.1600-0706.2003.12146.x es_ES
dc.description.references Newton, I. (2011). Obligate and facultative migration in birds: ecological aspects. Journal of Ornithology, 153(S1), 171-180. doi:10.1007/s10336-011-0765-3 es_ES
dc.description.references NILSSON, A. L. K., LINDSTRÖM, Å., JONZÉN, N., NILSSON, S. G., & KARLSSON, L. (2006). The effect of climate change on partial migration ? the blue tit paradox. Global Change Biology, 12(10), 2014-2022. doi:10.1111/j.1365-2486.2006.01237.x es_ES
dc.description.references Nilsson, A. L. K., Alerstam, T., & Nilsson, J.-Å. (2008). Diffuse, short and slow migration among Blue Tits. Journal of Ornithology, 149(3), 365-373. doi:10.1007/s10336-008-0280-3 es_ES
dc.description.references Oksanen J Blanchet FG Kindt R Legendre P O'Hara RB Simpson GL Solymos PH Stevens MH Wagner H 2011 vegan: Community Ecology Package R package version 1 http://CRAN.R-project.org/package=vegan es_ES
dc.description.references Orell, Lahti, Koivula, Rytkönen, & Welling. (1999). Immigration and gene flow in a northern willow tit ( Parus montanus ) population. Journal of Evolutionary Biology, 12(2), 283-295. doi:10.1046/j.1420-9101.1999.00030.x es_ES
dc.description.references Päckert, M., Martens, J., & Sun, Y.-H. (2010). Phylogeny of long-tailed tits and allies inferred from mitochondrial and nuclear markers (Aves: Passeriformes, Aegithalidae). Molecular Phylogenetics and Evolution, 55(3), 952-967. doi:10.1016/j.ympev.2010.01.024 es_ES
dc.description.references Pärn, H., Ringsby, T. H., Jensen, H., & Sæther, B.-E. (2011). Spatial heterogeneity in the effects of climate and density-dependence on dispersal in a house sparrow metapopulation. Proceedings of the Royal Society B: Biological Sciences, 279(1726), 144-152. doi:10.1098/rspb.2011.0673 es_ES
dc.description.references Pavlova, A. (2006). Different Post-Pleistocene Histories of Eurasian Parids. Journal of Heredity, 97(4), 389-402. doi:10.1093/jhered/esl011 es_ES
dc.description.references PEAKALL, R., & SMOUSE, P. E. (2006). genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. doi:10.1111/j.1471-8286.2005.01155.x es_ES
dc.description.references Pentzold, S., Tritsch, C., Martens, J., Tietze, D. T., Giacalone, G., Valvo, M. L., … Päckert, M. (2013). Where is the line? Phylogeography and secondary contact of western Palearctic coal tits (Periparus ater: Aves, Passeriformes, Paridae). Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(3), 367-382. doi:10.1016/j.jcz.2012.10.003 es_ES
dc.description.references Peterson, M. A., & Denno, R. F. (1998). The Influence of Dispersal and Diet Breadth on Patterns of Genetic Isolation by Distance in Phytophagous Insects. The American Naturalist, 152(3), 428-446. doi:10.1086/286180 es_ES
dc.description.references PILOT, M., JEDRZEJEWSKI, W., BRANICKI, W., SIDOROVICH, V. E., JEDRZEJEWSKA, B., STACHURA, K., & FUNK, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533-4553. doi:10.1111/j.1365-294x.2006.03110.x es_ES
dc.description.references Postma, E., & van Noordwijk, A. J. (2005). Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature, 433(7021), 65-68. doi:10.1038/nature03083 es_ES
dc.description.references POSTMA, E., DEN TEX, R.-J., VAN NOORDWIJK, A. J., & MATEMAN, A. C. (2009). Neutral markers mirror small-scale quantitative genetic differentiation in an avian island population. Biological Journal of the Linnean Society, 97(4), 867-875. doi:10.1111/j.1095-8312.2009.01252.x es_ES
dc.description.references Procházka, P., Stokke, B. G., Jensen, H., Fainová, D., Bellinvia, E., Fossøy, F., … Soler, M. (2011). Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. Journal of Avian Biology, 42(2), 103-113. doi:10.1111/j.1600-048x.2010.05161.x es_ES
dc.description.references Purcell, J. F. ., Cowen, R. K., Hughes, C. R., & Williams, D. A. (2006). Weak genetic structure indicates strong dispersal limits: a tale of two coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 273(1593), 1483-1490. doi:10.1098/rspb.2006.3470 es_ES
dc.description.references Rice, W. R. (1989). Analyzing Tables of Statistical Tests. Evolution, 43(1), 223. doi:10.2307/2409177 es_ES
dc.description.references ROUSSET, F. (2008). genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106. doi:10.1111/j.1471-8286.2007.01931.x es_ES
dc.description.references Sanford, E., & Kelly, M. W. (2011). Local Adaptation in Marine Invertebrates. Annual Review of Marine Science, 3(1), 509-535. doi:10.1146/annurev-marine-120709-142756 es_ES
dc.description.references Savolainen, O., Pyhäjärvi, T., & Knürr, T. (2007). Gene Flow and Local Adaptation in Trees. Annual Review of Ecology, Evolution, and Systematics, 38(1), 595-619. doi:10.1146/annurev.ecolsys.38.091206.095646 es_ES
dc.description.references Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787-792. doi:10.1126/science.3576198 es_ES
dc.description.references Snoeijs, T., Van de Casteele, T., Adriaensen, F., Matthysen, E., & Eens, M. (2004). A strong association between immune responsiveness and natal dispersal in a songbird. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(suppl_4). doi:10.1098/rsbl.2003.0148 es_ES
dc.description.references Stenseth, N. C., Durant, J. M., Fowler, M. S., Matthysen, E., Adriaensen, F., Jonzén, N., … Dhondt, A. A. (2015). Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 20141958. doi:10.1098/rspb.2014.1958 es_ES
dc.description.references Travis, J. M. J., & Dytham, C. (1999). Habitat persistence, habitat availability and the evolution of dispersal. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1420), 723-728. doi:10.1098/rspb.1999.0696 es_ES
dc.description.references Van BERS, N. E. M., SANTURE, A. W., Van OERS, K., DE CAUWER, I., DIBBITS, B. W., MATEMAN, C., … SLATE, J. (2012). The design and cross-population application of a genome-wide SNP chip for the great tit Parus major. Molecular Ecology Resources, 12(4), 753-770. doi:10.1111/j.1755-0998.2012.03141.x es_ES
dc.description.references VAN DOORSLAER, W., VANOVERBEKE, J., DUVIVIER, C., ROUSSEAUX, S., JANSEN, M., JANSEN, B., … DE MEESTER, L. (2009). Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water fleaDaphnia. Global Change Biology, 15(12), 3046-3055. doi:10.1111/j.1365-2486.2009.01980.x es_ES
dc.description.references VAN OOSTERHOUT, C., HUTCHINSON, W. F., WILLS, D. P. M., & SHIPLEY, P. (2004). micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535-538. doi:10.1111/j.1471-8286.2004.00684.x es_ES
dc.description.references Van Vliet, J., Musters, C. J. M., & Ter Keurs, W. J. (2009). Changes in migration behaviour of BlackbirdsTurdus merulafrom the Netherlands. Bird Study, 56(2), 276-281. doi:10.1080/00063650902792148 es_ES
dc.description.references Vel’ký, M., Kaňuch, P., & Krištín, A. (2011). Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zoologica, 60(3), 228-236. doi:10.25225/fozo.v60.i3.a7.2011 es_ES
dc.description.references Verhulst, S., Perrins, C. M., & Riddington, R. (1997). NATAL DISPERSAL OF GREAT TITS IN A PATCHY ENVIRONMENT. Ecology, 78(3), 864-872. doi:10.1890/0012-9658(1997)078[0864:ndogti]2.0.co;2 es_ES
dc.description.references Visser, M. E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B: Biological Sciences, 275(1635), 649-659. doi:10.1098/rspb.2007.0997 es_ES
dc.description.references WANG, I. J. (2010). Recognizing the temporal distinctions between landscape genetics and phylogeography. Molecular Ecology, 19(13), 2605-2608. doi:10.1111/j.1365-294x.2010.04715.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem