- -

Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marti, A. es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Gaviña Costero, Pablo es_ES
dc.contributor.author Parra Álvarez, Margarita es_ES
dc.date.accessioned 2016-09-28T06:42:47Z
dc.date.available 2016-09-28T06:42:47Z
dc.date.issued 2015-01
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/70523
dc.description.abstract [EN] A new colorimetric system for NO(g) detection is described. The detection method is based on the aggregation of modified AuNPs through a Cu(I) catalyzed click reaction promoted by the in situ reduction of Cu(II) by NO es_ES
dc.description.sponsorship We acknowledge the Spanish Government (MAT2009-14564-C04-03 and MAT2012-38429-C04-02) for financial support. A. M. is grateful to the Spanish Government for a fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4cc10149a
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-03/ES/Sensores Y Remediadores De Agentes Nerviosos Y Simulantes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Marti, A.; Costero Nieto, AM.; Gaviña Costero, P.; Parra Álvarez, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications. 51(15):3077-3079. https://doi.org/10.1039/c4cc10149a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4cc10149a es_ES
dc.description.upvformatpinicio 3077 es_ES
dc.description.upvformatpfin 3079 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 15 es_ES
dc.relation.senia 313910 es_ES
dc.identifier.pmid 25613775
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Nagano, T. (1999). Practical methods for detection of nitric oxide. Luminescence, 14(6), 283-290. doi:10.1002/(sici)1522-7243(199911/12)14:6<283::aid-bio572>3.0.co;2-g es_ES
dc.description.references L. J. Ignarro , Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2010 es_ES
dc.description.references Ma, S., Fang, D.-C., Ning, B., Li, M., He, L., & Gong, B. (2014). The rational design of a highly sensitive and selective fluorogenic probe for detecting nitric oxide. Chem. Commun., 50(49), 6475-6478. doi:10.1039/c4cc01142b es_ES
dc.description.references Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., … Nagano, T. (1998). Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:  Diaminofluoresceins. Analytical Chemistry, 70(13), 2446-2453. doi:10.1021/ac9801723 es_ES
dc.description.references Chen, X., Tian, X., Shin, I., & Yoon, J. (2011). Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 40(9), 4783. doi:10.1039/c1cs15037e es_ES
dc.description.references Beltrán, A., Isabel Burguete, M., Abánades, D. R., Pérez-Sala, D., Luis, S. V., & Galindo, F. (2014). Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 50(27), 3579. doi:10.1039/c3cc49555h es_ES
dc.description.references Lv, X., Wang, Y., Zhang, S., Liu, Y., Zhang, J., & Guo, W. (2014). A specific fluorescent probe for NO based on a new NO-binding group. Chem. Commun., 50(56), 7499-7502. doi:10.1039/c4cc03540b es_ES
dc.description.references Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178 es_ES
dc.description.references Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313v es_ES
dc.description.references Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339 es_ES
dc.description.references Zhou, Y., Wang, S., Zhang, K., & Jiang, X. (2008). Visual Detection of Copper(II) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angewandte Chemie International Edition, 47(39), 7454-7456. doi:10.1002/anie.200802317 es_ES
dc.description.references Hua, C., Zhang, W. H., De Almeida, S. R. M., Ciampi, S., Gloria, D., Liu, G., … Gooding, J. J. (2012). A novel route to copper(ii) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. The Analyst, 137(1), 82-86. doi:10.1039/c1an15693d es_ES
dc.description.references Zhang, Y., Li, B., & Xu, C. (2010). Visual detection of ascorbic acid via alkyne–azide click reaction using gold nanoparticles as a colorimetric probe. The Analyst, 135(7), 1579. doi:10.1039/c0an00056f es_ES
dc.description.references Tran, D., & Ford, P. C. (1996). Nitric Oxide Reduction of the Copper(II) Complex Cu(dmp)22+(dmp = 2,9-Dimethyl-1,10-phenanthroline). Inorganic Chemistry, 35(9), 2411-2412. doi:10.1021/ic9511175 es_ES
dc.description.references Tsuge, K., DeRosa, F., Lim, M. D., & Ford, P. C. (2004). Intramolecular Reductive Nitrosylation:  Reaction of Nitric Oxide and a Copper(II) Complex of a Cyclam Derivative with Pendant Luminescent Chromophores. Journal of the American Chemical Society, 126(21), 6564-6565. doi:10.1021/ja049444b es_ES
dc.description.references Lim, M. H., & Lippard, S. J. (2005). Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution. Journal of the American Chemical Society, 127(35), 12170-12171. doi:10.1021/ja053150o es_ES
dc.description.references Apfel, U.-P., Buccella, D., Wilson, J. J., & Lippard, S. J. (2013). Detection of Nitric Oxide and Nitroxyl with Benzoresorufin-Based Fluorescent Sensors. Inorganic Chemistry, 52(6), 3285-3294. doi:10.1021/ic302793w es_ES
dc.description.references Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084 es_ES
dc.description.references Lin, S.-Y., Tsai, Y.-T., Chen, C.-C., Lin, C.-M., & Chen, C. (2004). Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. The Journal of Physical Chemistry B, 108(7), 2134-2139. doi:10.1021/jp036310w es_ES
dc.description.references Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.005 es_ES
dc.description.references Brotherton, W. S., Michaels, H. A., Simmons, J. T., Clark, R. J., Dalal, N. S., & Zhu, L. (2009). Apparent Copper(II)-Accelerated Azide−Alkyne Cycloaddition. Organic Letters, 11(21), 4954-4957. doi:10.1021/ol9021113 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem