Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Bertomeu, Jesús | es_ES |
dc.contributor.author | Lorences, E.P. | es_ES |
dc.date.accessioned | 2016-09-28T07:20:49Z | |
dc.date.available | 2016-09-28T07:20:49Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 0929-1873 | |
dc.identifier.uri | http://hdl.handle.net/10251/70536 | |
dc.description.abstract | Although the plant cell wall is an extremely effective physical barrier against attack by pathogens, most phytopathogenic microorganisms produce enzymes that are capable of degrading cell wall polymers such as pectin and hemicelluloses. In this work we investigate the possible implication of the cell wall enzyme XET in the host-pathogen interaction as well as the XTH gene regulation during apple fruit infection by Penicillium expansum Link. A. We characterized the time course of fungal infection in apple fruit, and the XET activity and the expression of eleven MdXTHs. The results showed an important decrease in XET specific activity in the fruits after 24, 48 and 72 h of fruit infection (42.9 %, 73.1 % and 95.1 % respectively as compared with the controls). The expression analysis of the MdXTHs showed an important decrease in expression, as the infection progressed, in MdXTH2 and MdXTH10, as well as in MdXTH3, MdXTH4 and MdXTH5, but mainly after 72 h of fruit infection; and in MdXTH1, and MdXTH9 after 24 and 48 h of infection. These results suggested that the decrease in XET activity during infection could be mainly attributed to the decrease in expression of MdXTH2 and MdXTH10, since those were the MdXTHs that showed the highest expression levels during ripening, particularly MdXTH10. These results support the suggestion that inhibition of MdXTHs expression, and consequently the decrease in XET specific activity, could represent a pathogenicity factor, since the potential reconstructing role of the enzyme also decreased and the infection could progress. | es_ES |
dc.description.sponsorship | This work was funded by GVA, PROMETEO/2009/075. We wish to thank Mr D. A. Lindsay for correcting the English version of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | European Journal of Plant Pathology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cell wall | es_ES |
dc.subject | Fruit infection | es_ES |
dc.subject | Malus domestica | es_ES |
dc.subject | Penicillium expansum | es_ES |
dc.subject | Transglucosylation | es_ES |
dc.subject | Xyloglucan | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10658-013-0327-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Muñoz Bertomeu, J.; Lorences, E. (2014). Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A. European Journal of Plant Pathology. 138(2):273-282. https://doi.org/10.1007/s10658-013-0327-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10658-013-0327-z | es_ES |
dc.description.upvformatpinicio | 273 | es_ES |
dc.description.upvformatpfin | 282 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 138 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 255040 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Albert, M., Werner, M., Proksch, P., Fry, S. C., & Kaldenhoff, R. (2004). The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biology, 6, 402–407. | es_ES |
dc.description.references | Annis, S. L., & Goodwin, P. H. (1997). Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal of Plant Pathology, 103, 1–14. | es_ES |
dc.description.references | Atkinson, R. G., Johnston, S. L., Yauk, Y. K., Sharma, N. N., & Schröder, R. (2009). Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 51, 149–157. | es_ES |
dc.description.references | Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., & Nath, P. (2010). Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology Advances, 28, 94–107. | es_ES |
dc.description.references | Baumann, M. J., Eklöf, J. M., Michel, G., Kallas, A. M., Teeri, T. T., Czjzek, M., et al. (2007). Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 19, 1947–1963. | es_ES |
dc.description.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. | es_ES |
dc.description.references | Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3, 1–30. | es_ES |
dc.description.references | Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24, 383–409. | es_ES |
dc.description.references | De Lorenzo, G., Castoria, R., Bellincampi, D., & Cervone, F. (1997). Fungal invasion enzymes and their inhibition. In G. C. Carroll & P. Tudzynski (Eds.), The Mycota. V. Plant Relationships, Part B (pp. 61–83). Berlin: Springer. | es_ES |
dc.description.references | Divol, F., Vilaine, F., Thibivilliers, S., Kusiak, C., Sauge, M. H., & Dinant, S. (2007). Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell and Environment, 30, 187–201. | es_ES |
dc.description.references | Esquerré-Tugayé, M. T., Boudart, G., & Dumas, B. (2000). Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiology and Biochemistry, 38, 157–163. | es_ES |
dc.description.references | Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z. J., Batista, L. M., et al. (2006). Fungal pathogens: The battle for plant infection. Critical Reviews in Plant Sciences, 25, 505–524. | es_ES |
dc.description.references | Fonseca, S., Monteiro, L., Barreiro, M. G., & Pais, M. S. (2005). Expression of genes encoding cell wall modifying enzymes is induced by cold storage and reflects changes in pear fruit texture. Journal of Experimental Botany, 56, 2029–2036. | es_ES |
dc.description.references | Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., & Matthews, K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemical Journal, 282, 821–828. | es_ES |
dc.description.references | Goulao, L. F., Cosgrove, D. J., & Oliveira, C. M. (2008). Cloning, characterisation and expression analyses of cDNA clones encoding cell wall-modifying enzymes isolated from ripe apples. Postharvest Biology and Technology, 48, 37–51. | es_ES |
dc.description.references | Hirao, T., Fukatsu, E., & Watanabe, A. (2012). Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC Plant Biology, 12, 13. | es_ES |
dc.description.references | Juge, N. (2006). Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 11, 359–367. | es_ES |
dc.description.references | Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59. | es_ES |
dc.description.references | Lionetti, V., Cervone, F., & Bellincampi, D. (2012). Methyl esterification of pectin plays a role during plant–pathogen interactionsand affects plant resistance to diseases. Journal of Plant Physiology, 169, 1623–1630. | es_ES |
dc.description.references | Lorences, E. P., & Fry, S. C. (1993). Xyloglucan oligosaccharides with at least two α-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Physiologia Plantarum, 88, 105–112. | es_ES |
dc.description.references | Maldonado-Mendoza, I. E., Dewbre, G. R., Blaylock, L., & Harrison, M. J. (2005). Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene, 345, 191–197. | es_ES |
dc.description.references | Miedes, E., & Lorences, E. P. (2004). Apple (Malus domestica) and tomato (Lycopersicum esculentum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. Journal of Agricultural and Food Chemistry, 52, 7957–7963. | es_ES |
dc.description.references | Miedes, E., & Lorences, E. P. (2006). Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. Journal of the Science of Food and Agriculture, 86, 1359–1364. | es_ES |
dc.description.references | Miedes, E., & Lorences, E. P. (2007). The implication of xyloglucan endotransglucosylase/hydrolase (XTHs) in tomato fruit infection by Penicillium expansum Link.A. Journal of Agricultural and Food Chemistry, 55, 9021–9026. | es_ES |
dc.description.references | Miedes, E., & Lorences, E. P. (2009). Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. Journal of Plant Physiology, 166, 489–498. | es_ES |
dc.description.references | Miedes, E., Herbers, K., Sonnewald, U., & Lorences, E. P. (2010). Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits. Journal of Agricultural and Food Chemistry, 58, 5708–5713. | es_ES |
dc.description.references | Moran, P. J., Cheng, Y. F., Cassell, J. L., & Thompson, G. A. (2002). Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of insect Biochemistry and Physiology, 51, 182–203. | es_ES |
dc.description.references | Nishitani, K., & Tominaga, R. (1992). Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry, 267, 21058–21064. | es_ES |
dc.description.references | Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358. | es_ES |
dc.description.references | Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. | es_ES |
dc.description.references | Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43, 1421–1435. | es_ES |
dc.description.references | Rosenberger, D. A. (1990). Gray mold. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of Apple and Pear Diseases (pp. 55–6). St Paul: Amer Phytopathological Society Publishers. | es_ES |
dc.description.references | Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. | es_ES |
dc.description.references | Saladié, M., Rose, J. K. C., Cosgrove, D. J., & Catalá, C. (2006). Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 47, 282–295. | es_ES |
dc.description.references | Sharmin, S., Azam, M. S., Islam, M. S., Sajib, A. A., Mahmood, N., Hasan, A. M., et al. (2012). Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection. Communicative & Integrative Biology, 5, 598–606. | es_ES |
dc.description.references | Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. | es_ES |
dc.description.references | Vilanova, L., Teixidó, N., Torres, R., Usall, J., & Viñas, I. (2012). The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. International Journal of Food Microbiology, 157, 360–367. | es_ES |
dc.description.references | Voelckel, C., Weisser, W. W., & Baldwin, I. T. (2004). An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecology, 13, 3187–3195. | es_ES |
dc.description.references | Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9, 203–209. | es_ES |
dc.description.references | Walton, J. D. (1994). Deconstructing the cell wall. Plant Physiology, 104, 1113–1118. | es_ES |