- -

Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Bertomeu, Jesús es_ES
dc.contributor.author Lorences, E.P. es_ES
dc.date.accessioned 2016-09-28T07:20:49Z
dc.date.available 2016-09-28T07:20:49Z
dc.date.issued 2014-02
dc.identifier.issn 0929-1873
dc.identifier.uri http://hdl.handle.net/10251/70536
dc.description.abstract Although the plant cell wall is an extremely effective physical barrier against attack by pathogens, most phytopathogenic microorganisms produce enzymes that are capable of degrading cell wall polymers such as pectin and hemicelluloses. In this work we investigate the possible implication of the cell wall enzyme XET in the host-pathogen interaction as well as the XTH gene regulation during apple fruit infection by Penicillium expansum Link. A. We characterized the time course of fungal infection in apple fruit, and the XET activity and the expression of eleven MdXTHs. The results showed an important decrease in XET specific activity in the fruits after 24, 48 and 72 h of fruit infection (42.9 %, 73.1 % and 95.1 % respectively as compared with the controls). The expression analysis of the MdXTHs showed an important decrease in expression, as the infection progressed, in MdXTH2 and MdXTH10, as well as in MdXTH3, MdXTH4 and MdXTH5, but mainly after 72 h of fruit infection; and in MdXTH1, and MdXTH9 after 24 and 48 h of infection. These results suggested that the decrease in XET activity during infection could be mainly attributed to the decrease in expression of MdXTH2 and MdXTH10, since those were the MdXTHs that showed the highest expression levels during ripening, particularly MdXTH10. These results support the suggestion that inhibition of MdXTHs expression, and consequently the decrease in XET specific activity, could represent a pathogenicity factor, since the potential reconstructing role of the enzyme also decreased and the infection could progress. es_ES
dc.description.sponsorship This work was funded by GVA, PROMETEO/2009/075. We wish to thank Mr D. A. Lindsay for correcting the English version of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof European Journal of Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell wall es_ES
dc.subject Fruit infection es_ES
dc.subject Malus domestica es_ES
dc.subject Penicillium expansum es_ES
dc.subject Transglucosylation es_ES
dc.subject Xyloglucan es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10658-013-0327-z
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F075/ES/Mejora de plantas con interés agronómico y forestal- MEPIAF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Muñoz Bertomeu, J.; Lorences, E. (2014). Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A. European Journal of Plant Pathology. 138(2):273-282. https://doi.org/10.1007/s10658-013-0327-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10658-013-0327-z es_ES
dc.description.upvformatpinicio 273 es_ES
dc.description.upvformatpfin 282 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 255040 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Albert, M., Werner, M., Proksch, P., Fry, S. C., & Kaldenhoff, R. (2004). The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biology, 6, 402–407. es_ES
dc.description.references Annis, S. L., & Goodwin, P. H. (1997). Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal of Plant Pathology, 103, 1–14. es_ES
dc.description.references Atkinson, R. G., Johnston, S. L., Yauk, Y. K., Sharma, N. N., & Schröder, R. (2009). Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 51, 149–157. es_ES
dc.description.references Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., & Nath, P. (2010). Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology Advances, 28, 94–107. es_ES
dc.description.references Baumann, M. J., Eklöf, J. M., Michel, G., Kallas, A. M., Teeri, T. T., Czjzek, M., et al. (2007). Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 19, 1947–1963. es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. es_ES
dc.description.references Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3, 1–30. es_ES
dc.description.references Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24, 383–409. es_ES
dc.description.references De Lorenzo, G., Castoria, R., Bellincampi, D., & Cervone, F. (1997). Fungal invasion enzymes and their inhibition. In G. C. Carroll & P. Tudzynski (Eds.), The Mycota. V. Plant Relationships, Part B (pp. 61–83). Berlin: Springer. es_ES
dc.description.references Divol, F., Vilaine, F., Thibivilliers, S., Kusiak, C., Sauge, M. H., & Dinant, S. (2007). Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell and Environment, 30, 187–201. es_ES
dc.description.references Esquerré-Tugayé, M. T., Boudart, G., & Dumas, B. (2000). Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiology and Biochemistry, 38, 157–163. es_ES
dc.description.references Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z. J., Batista, L. M., et al. (2006). Fungal pathogens: The battle for plant infection. Critical Reviews in Plant Sciences, 25, 505–524. es_ES
dc.description.references Fonseca, S., Monteiro, L., Barreiro, M. G., & Pais, M. S. (2005). Expression of genes encoding cell wall modifying enzymes is induced by cold storage and reflects changes in pear fruit texture. Journal of Experimental Botany, 56, 2029–2036. es_ES
dc.description.references Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., & Matthews, K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemical Journal, 282, 821–828. es_ES
dc.description.references Goulao, L. F., Cosgrove, D. J., & Oliveira, C. M. (2008). Cloning, characterisation and expression analyses of cDNA clones encoding cell wall-modifying enzymes isolated from ripe apples. Postharvest Biology and Technology, 48, 37–51. es_ES
dc.description.references Hirao, T., Fukatsu, E., & Watanabe, A. (2012). Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC Plant Biology, 12, 13. es_ES
dc.description.references Juge, N. (2006). Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 11, 359–367. es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59. es_ES
dc.description.references Lionetti, V., Cervone, F., & Bellincampi, D. (2012). Methyl esterification of pectin plays a role during plant–pathogen interactionsand affects plant resistance to diseases. Journal of Plant Physiology, 169, 1623–1630. es_ES
dc.description.references Lorences, E. P., & Fry, S. C. (1993). Xyloglucan oligosaccharides with at least two α-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Physiologia Plantarum, 88, 105–112. es_ES
dc.description.references Maldonado-Mendoza, I. E., Dewbre, G. R., Blaylock, L., & Harrison, M. J. (2005). Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene, 345, 191–197. es_ES
dc.description.references Miedes, E., & Lorences, E. P. (2004). Apple (Malus domestica) and tomato (Lycopersicum esculentum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. Journal of Agricultural and Food Chemistry, 52, 7957–7963. es_ES
dc.description.references Miedes, E., & Lorences, E. P. (2006). Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. Journal of the Science of Food and Agriculture, 86, 1359–1364. es_ES
dc.description.references Miedes, E., & Lorences, E. P. (2007). The implication of xyloglucan endotransglucosylase/hydrolase (XTHs) in tomato fruit infection by Penicillium expansum Link.A. Journal of Agricultural and Food Chemistry, 55, 9021–9026. es_ES
dc.description.references Miedes, E., & Lorences, E. P. (2009). Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. Journal of Plant Physiology, 166, 489–498. es_ES
dc.description.references Miedes, E., Herbers, K., Sonnewald, U., & Lorences, E. P. (2010). Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits. Journal of Agricultural and Food Chemistry, 58, 5708–5713. es_ES
dc.description.references Moran, P. J., Cheng, Y. F., Cassell, J. L., & Thompson, G. A. (2002). Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of insect Biochemistry and Physiology, 51, 182–203. es_ES
dc.description.references Nishitani, K., & Tominaga, R. (1992). Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry, 267, 21058–21064. es_ES
dc.description.references Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358. es_ES
dc.description.references Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. es_ES
dc.description.references Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43, 1421–1435. es_ES
dc.description.references Rosenberger, D. A. (1990). Gray mold. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of Apple and Pear Diseases (pp. 55–6). St Paul: Amer Phytopathological Society Publishers. es_ES
dc.description.references Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. es_ES
dc.description.references Saladié, M., Rose, J. K. C., Cosgrove, D. J., & Catalá, C. (2006). Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 47, 282–295. es_ES
dc.description.references Sharmin, S., Azam, M. S., Islam, M. S., Sajib, A. A., Mahmood, N., Hasan, A. M., et al. (2012). Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection. Communicative & Integrative Biology, 5, 598–606. es_ES
dc.description.references Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. es_ES
dc.description.references Vilanova, L., Teixidó, N., Torres, R., Usall, J., & Viñas, I. (2012). The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. International Journal of Food Microbiology, 157, 360–367. es_ES
dc.description.references Voelckel, C., Weisser, W. W., & Baldwin, I. T. (2004). An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecology, 13, 3187–3195. es_ES
dc.description.references Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9, 203–209. es_ES
dc.description.references Walton, J. D. (1994). Deconstructing the cell wall. Plant Physiology, 104, 1113–1118. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem