- -

Properties of purely reactive Foster and non-Foster passive networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Properties of purely reactive Foster and non-Foster passive networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Müller, Andrei es_ES
dc.contributor.author Lucyszyn, S. es_ES
dc.date.accessioned 2016-09-28T07:33:07Z
dc.date.available 2016-09-28T07:33:07Z
dc.date.issued 2015-11-05
dc.identifier.issn 0013-5194
dc.identifier.uri http://hdl.handle.net/10251/70545
dc.description.abstract [EN] The mathematical concept of strongly real functions of positive and negative types is introduced to network theory for the first time. The driving-point reactance/susceptance of a pure Foster network, made up of only ideal positive inductance and capacitance elements, is a strongly real function of real frequency of positive type. As a corollary, for a pure non-Foster network made up of only ideal negative inductance and capacitance elements, the driving-point reactance/susceptance is a strongly real function of real frequency of negative type. It is shown that a condition for a purely reactive passive network to exhibit a positive or negative reactance/susceptance-frequency gradient is that the driving-point immittance should have alternating poles and zeroes lying on the real frequency axis. Finally, it is shown that either purely Foster or non-Foster networks can be constructed by combining ideal Foster and non-Foster reactive elements. es_ES
dc.description.sponsorship This work was partly funded by the FP7 PCIG11-2012-322162 Marie Curie CIG grant. en_EN
dc.language Inglés es_ES
dc.publisher Institution of Engineering and Technology (IET) es_ES
dc.relation.ispartof Electronics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Properties of purely reactive Foster and non-Foster passive networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/el.2015.1429
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/322162/EU/Efficient Synthesis and Design of Reconfigurable MEMS-based Band-Pass Filters in SIW Technology/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Müller, A.; Lucyszyn, S. (2015). Properties of purely reactive Foster and non-Foster passive networks. Electronics Letters. 51(23):1882-1884. https://doi.org/10.1049/el.2015.1429 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1049/el.2015.1429 es_ES
dc.description.upvformatpinicio 1882 es_ES
dc.description.upvformatpfin 1884 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 23 es_ES
dc.relation.senia 296742 es_ES
dc.contributor.funder European Commission
dc.description.references Foster, R. M. (1924). A Reactance Theorem. Bell System Technical Journal, 3(2), 259-267. doi:10.1002/j.1538-7305.1924.tb01358.x es_ES
dc.description.references Sussman-Fort, S. E., & Rudish, R. M. (2009). Non-Foster Impedance Matching of Electrically-Small Antennas. IEEE Transactions on Antennas and Propagation, 57(8), 2230-2241. doi:10.1109/tap.2009.2024494 es_ES
dc.description.references Mirzaei, H., & Eleftheriades, G. V. (2013). Realizing Non-Foster Reactive Elements Using Negative-Group-Delay Networks. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4322-4332. doi:10.1109/tmtt.2013.2281967 es_ES
dc.description.references Lucyszyn, S., Robertson, I. D., & Aghvami, A. H. (1993). Negative group delay synthesiser. Electronics Letters, 29(9), 798. doi:10.1049/el:19930533 es_ES
dc.description.references Lucyszyn, S., & Robertson, I. D. (1995). Analog reflection topology building blocks for adaptive microwave signal processing applications. IEEE Transactions on Microwave Theory and Techniques, 43(3), 601-611. doi:10.1109/22.372106 es_ES
dc.description.references Geyi, W. (2015). Stored Energies and Radiation Q. IEEE Transactions on Antennas and Propagation, 63(2), 636-645. doi:10.1109/tap.2014.2384028 es_ES
dc.description.references Andersen, J. B., & Berntsen, S. (2007). Comments on "The Foster Reactance Theorem for Antennas and Radiation Q. IEEE Transactions on Antennas and Propagation, 55(3), 1013-1014. doi:10.1109/tap.2007.891877 es_ES
dc.description.references Holtz, O., & Tyaglov, M. (2012). Structured Matrices, Continued Fractions, and Root Localization of Polynomials. SIAM Review, 54(3), 421-509. doi:10.1137/090781127 es_ES
dc.description.references Muller, A. A., Moldoveanu, A., Soto, P., Sanabria-Codesal, E., Lucyszyn, S., Asavei, V., & Boria, V. E. (2014). Apollonius unilateral transducer constant power gain circles on 3D Smith charts. Electronics Letters, 50(21), 1531-1533. doi:10.1049/el.2014.2695 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem