- -

Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed

Show full item record

García Fayos, B.; Arnal Arnal, JM.; Monforte Monleon, L.; Sancho Fernández, MP. (2015). Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed. Desalination and Water Treatment. 55(13):3635-3645. doi:10.1080/19443994.2014.939487

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70547

Files in this item

Item Metadata

Title: Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed
Author: García Fayos, Beatriz Arnal Arnal, José Miguel Monforte Monleon, Lorenzo Sancho Fernández, María Pino
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Drinking water treatment is a process based on multiple stages that has a main objective to provide water safe enough to be consumed by humans. Coagulation–flocculation is used to remove colloidal and suspended solids. ...[+]
Subjects: Coagulant aids , Coagulation , Drinking water treatment , Moringa , Organic polyelectrolytes
Copyrigths: Reserva de todos los derechos
Source:
Desalination and Water Treatment. (issn: 1944-3986 )
DOI: 10.1080/19443994.2014.939487
Publisher:
Taylor & Francis
Publisher version: http://dx.doi.org/10.1080/19443994.2014.939487
Conference name: Conference on Desalination for the Environment - Clean Water and Energy
Conference place: Limasol, Cyprus
Conference date: May 11-15, 2014
Thanks:
This research has been done in the framework of the project “Study of synthetic and natural coagulants susceptible of being used in the water treatment plant of “Ribarroja del Turia” (Valencia) as substitutes for ...[+]
Type: Artículo Comunicación en congreso

References

Van Benschoten, J. E., & Edzwald, J. K. (1990). Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride. Water Research, 24(12), 1519-1526. doi:10.1016/0043-1354(90)90086-l

BOLTO, B. (1995). Soluble polymers in water purification. Progress in Polymer Science, 20(6), 987-1041. doi:10.1016/0079-6700(95)00010-d

Crapper, D. R., Krishnan, S. S., & Dalton, A. J. (1973). Brain Aluminum Distribution in Alzheimer’s Disease and Experimental Neurofibrillary Degeneration. Science, 180(4085), 511-513. doi:10.1126/science.180.4085.511 [+]
Van Benschoten, J. E., & Edzwald, J. K. (1990). Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride. Water Research, 24(12), 1519-1526. doi:10.1016/0043-1354(90)90086-l

BOLTO, B. (1995). Soluble polymers in water purification. Progress in Polymer Science, 20(6), 987-1041. doi:10.1016/0079-6700(95)00010-d

Crapper, D. R., Krishnan, S. S., & Dalton, A. J. (1973). Brain Aluminum Distribution in Alzheimer’s Disease and Experimental Neurofibrillary Degeneration. Science, 180(4085), 511-513. doi:10.1126/science.180.4085.511

Davison, A. M., Oli, H., Walker, G. S., & Lewins, A. M. (1982). WATER SUPPLY ALUMINIUM CONCENTRATION, DIALYSIS DEMENTIA, AND EFFECT OF REVERSE-OSMOSIS WATER TREATMENT. The Lancet, 320(8302), 785-787. doi:10.1016/s0140-6736(82)92678-2

Rondeau, V., Commenges, D., Jacqmin-Gadda, H., & Dartigues, J.-F. (2000). Relation between Aluminum Concentrations in Drinking Water and Alzheimer’s Disease: An 8-year Follow-up Study. American Journal of Epidemiology, 152(1), 59-66. doi:10.1093/aje/152.1.59

Rondeau, V. (2001). RE: ALUMINUM IN DRINKING WATER AND COGNITIVE DECLINE IN ELDERLY SUBJECTS: THE PAQUID COHORT. American Journal of Epidemiology, 154(3), 288-a-290. doi:10.1093/aje/154.3.288-a

Gauthier, E., Fortier, I., Courchesne, F., Pepin, P., Mortimer, J., & Gauvreau, D. (2000). Aluminum Forms in Drinking Water and Risk of Alzheimer’s Disease. Environmental Research, 84(3), 234-246. doi:10.1006/enrs.2000.4101

Kawamura, S. (1976). Considerations on Improving Flocculation. Journal - American Water Works Association, 68(6), 328-336. doi:10.1002/j.1551-8833.1976.tb02421.x

A.D. Faust, O.M. Aly, Chemistry of Water Treatment, Butterworths, Boston, MA, 1983, pp. 326–328.

Martenson, C. H., Sheetz, M. P., & Graham, D. G. (1995). In Vitro Acrylamide Exposure Alters Growth Cone Morphology. Toxicology and Applied Pharmacology, 131(1), 119-129. doi:10.1006/taap.1995.1053

Kaggwa, R. C., Mulalelo, C. I., Denny, P., & Okurut, T. O. (2001). The impact of alum discharges on a natural tropical wetland in uganda. Water Research, 35(3), 795-807. doi:10.1016/s0043-1354(00)00301-8

Dearfield, K. L., Abernathy, C. O., Ottley, M. S., Brantner, J. H., & Hayes, P. F. (1988). Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutation Research/Reviews in Genetic Toxicology, 195(1), 45-77. doi:10.1016/0165-1110(88)90015-2

McCollister, D. D., Oyen, F., & Rowe, V. K. (1964). Toxicology of acrylamide. Toxicology and Applied Pharmacology, 6(2), 172-181. doi:10.1016/0041-008x(64)90103-6

BOLTO, B., & GREGORY, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301-2324. doi:10.1016/j.watres.2007.03.012

World Health Organization, Guidelines for drinking-water quality: Incorporating first and second addenda, in: World Health Organization (Ed.) Recommendations, third ed., vol. 1, World Health Organization, Geneva, 2008, pp. 188–194.

Hamilton, M. A. (1994). A Statistician’s View of the U.S. Primary Drinking Water Regulation on Coliform Contamination. Environmental Science & Technology, 28(11), 1808-1811. doi:10.1021/es00060a009

J. Criddle, A review of the mammalian and aquatic toxicity of polyelectrolites, NR 2545 Medmenhan, Foundation for Water Research 1990.

Hebert, A., Forestier, D., Lenes, D., Benanou, D., Jacob, S., Arfi, C., … Levi, Y. (2010). Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Research, 44(10), 3147-3165. doi:10.1016/j.watres.2010.02.004

Gerecke, A. C., & Sedlak, D. L. (2003). Precursors ofN-Nitrosodimethylamine in Natural Waters. Environmental Science & Technology, 37(7), 1331-1336. doi:10.1021/es026070i

Charrois, J. W. A., Arend, M. W., Froese, K. L., & Hrudey, S. E. (2004). DetectingN-Nitrosamines in Drinking Water at Nanogram per Liter Levels Using Ammonia Positive Chemical Ionization. Environmental Science & Technology, 38(18), 4835-4841. doi:10.1021/es049846j

S.A.A. Jahn, Proper use of African natural coagulants for rural water supplies- Research in the Sudan and a guide for new projects, Deutsche Gesellschaft für Technische Zusammenarheit (GTZ), Eschborn, 1986.

Dorea, C. C. (2006). Use of Moringa spp. seeds for coagulation: a review of a sustainable option. Water Science and Technology: Water Supply, 6(1), 219-227. doi:10.2166/ws.2006.027

Kawamura, S. (1991). Effectiveness of Natural Polyelectrolytes in Water Treatment. Journal - American Water Works Association, 83(10), 88-91. doi:10.1002/j.1551-8833.1991.tb07236.x

Lee, S. H., Lee, S. O., Jang, K. L., & Lee, T. H. (1995). Microbial flocculant from Arcuadendron sp. TS-49. Biotechnology Letters, 17(1), 95-100. doi:10.1007/bf00134203

Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater. (1997). Water Science and Technology, 35(2-3). doi:10.1016/s0273-1223(96)00943-2

Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., Osborn, R. W., & Nielson, K. (1997). Antimicrobial Peptides from Plants. Critical Reviews in Plant Sciences, 16(3), 297-323. doi:10.1080/07352689709701952

Jahn, S. A. A. (1988). Using Moringa Seeds as Coagulants in Developing Countries. Journal - American Water Works Association, 80(6), 43-50. doi:10.1002/j.1551-8833.1988.tb03052.x

Muyibi, S. A., & Okuofu, C. A. (1995). Coagulation of low turbidity surface waters withMoringa oleiferaseeds. International Journal of Environmental Studies, 48(3-4), 263-273. doi:10.1080/00207239508710996

Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 29(2), 703-710. doi:10.1016/0043-1354(94)00161-y

Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (2001). Isolation and characterization of coagulant extracted from moringa oleifera seed by salt solution. Water Research, 35(2), 405-410. doi:10.1016/s0043-1354(00)00290-6

Ghebremichael, K. A., Gunaratna, K. R., Henriksson, H., Brumer, H., & Dalhammar, G. (2005). A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39(11), 2338-2344. doi:10.1016/j.watres.2005.04.012

Sánchez-Martín, J., Ghebremichael, K., & Beltrán-Heredia, J. (2010). Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresource Technology, 101(15), 6259-6261. doi:10.1016/j.biortech.2010.02.072

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record