- -

Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Calatayud, Manuel César es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Sales, Sonia es_ES
dc.contributor.author Mestre, Sergio es_ES
dc.date.accessioned 2016-09-28T10:15:55Z
dc.date.available 2016-09-28T10:15:55Z
dc.date.issued 2013-01
dc.identifier.issn 1944-3994
dc.identifier.uri http://hdl.handle.net/10251/70564
dc.description.abstract In this article, the innovative cation-exchange membranes obtained from ceramic materials are presented. Different microporous ceramic supports were obtained from an initial mixture of alumina and kaolin, to which a varying content of starch was added in order to obtain supports with different pore size distributions. The deposition of zirconium phosphate into the porous supports generates membranes with cation-exchange properties. The fabrication of ion-exchange membranes which could resist aggressive electrolytes such as strong oxidizing spent chromium plating baths or radioactive solutions would allow the application of electrodialysis for the decontamination and regeneration of these industrial effluents. The performance of the manufactured membranes was studied in nickel sulfate solutions by means of chronopotentiometry. An increase of the membrane voltage drop during chronopotentiometric measurements was observed in some membranes, which seems to be a consequence of concentration polarization phenomena resulting from the ionic transfer occurred through the membranes. Current voltage curves were obtained for the different ceramic membranes, allowing the calculation of their ohmic resistance. The ohmic resistance of the membranes increased when the open porosity (OP) of the samples was incremented up to a value of 50%. For values of OP higher than 50%, the resistance of the membranes decreased significantly with porosity. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ceramic cation-exchange membranes es_ES
dc.subject Chronopotentiometry es_ES
dc.subject Zirconium phosphate es_ES
dc.subject Electrodialysis es_ES
dc.subject Industrial waste water reuse es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19443994.2012.714629
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Martí Calatayud, MC.; García Gabaldón, M.; Pérez-Herranz, V.; Sales, S.; Mestre, S. (2013). Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions. Desalination and Water Treatment. 51(1-3):597-605. doi:10.1080/19443994.2012.714629 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/19443994.2012.714629 es_ES
dc.description.upvformatpinicio 597 es_ES
dc.description.upvformatpfin 605 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1-3 es_ES
dc.relation.senia 232152 es_ES
dc.identifier.eissn 1944-3986
dc.description.references L. Harttinger, Handbook of Effluent Treatment and Recycling for The Metal Finishing Industry, Finishing Publications Ltd.; ASM International, Stevenage 1994. es_ES
dc.description.references Balagopal, S., Landro, T., Zecevic, S., Sutija, D., Elangovan, S., & Khandkar, A. (1999). Selective sodium removal from aqueous waste streams with NaSicon ceramics. Separation and Purification Technology, 15(3), 231-237. doi:10.1016/s1383-5866(98)00104-x es_ES
dc.description.references Hobbs, D. . (1999). Caustic recovery from alkaline nuclear waste by an electrochemical separation process. Separation and Purification Technology, 15(3), 239-253. doi:10.1016/s1383-5866(98)00105-1 es_ES
dc.description.references Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7 es_ES
dc.description.references García-Gabaldón, M., Pérez-Herranz, V., Sánchez, E., & Mestre, S. (2006). Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in eletrochemical reactors. Journal of Membrane Science, 280(1-2), 536-544. doi:10.1016/j.memsci.2006.02.007 es_ES
dc.description.references Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9 es_ES
dc.description.references Tripathi, B. P., & Shahi, V. K. (2007). SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038 es_ES
dc.description.references Clearfield, A., & Smith, G. D. (1969). Crystallography and structure of .alpha.-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemistry, 8(3), 431-436. doi:10.1021/ic50073a005 es_ES
dc.description.references Alberti, G., Bernasconi, M. G., Casciola, M., & Costantino, U. (1978). Ion exchange of some divalent and trivalent cations on the surface of zirconium acid phosphate micro-crystals. Journal of Chromatography A, 160(1), 109-115. doi:10.1016/s0021-9673(00)91786-2 es_ES
dc.description.references Yaroslavtsev, A. B. (2003). Ion DiffusionThrow Interface in Heterogeneous Solid Systems with the Modified Surface. Defect and Diffusion Forum, 216-217, 133-140. doi:10.4028/www.scientific.net/ddf.216-217.133 es_ES
dc.description.references Yaroslavtsev, A. B. (2009). Composite materials with ionic conductivity: from inorganic composites to hybrid membranes. Russian Chemical Reviews, 78(11), 1013-1029. doi:10.1070/rc2009v078n11abeh004066 es_ES
dc.description.references Yaroslavtsev, A. B., Nikonenko, V. V., & Zabolotsky, V. I. (2003). Ion transfer in ion-exchange and membrane materials. Russian Chemical Reviews, 72(5), 393-421. doi:10.1070/rc2003v072n05abeh000797 es_ES
dc.description.references Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785 es_ES
dc.description.references Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e es_ES
dc.description.references Sistat, P., & Pourcelly, G. (1997). Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. Journal of Membrane Science, 123(1), 121-131. doi:10.1016/s0376-7388(96)00210-4 es_ES
dc.description.references Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 es_ES
dc.description.references García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid. Journal of Membrane Science, 371(1-2), 65-74. doi:10.1016/j.memsci.2011.01.015 es_ES
dc.description.references GARCIAGABALDON, M., PEREZHERRANZ, V., SANCHEZ, E., & MESTRE, S. (2008). Effect of tin concentration on the electrical properties of ceramic membranes used as separators in electrochemical reactors. Journal of Membrane Science, 323(1), 213-220. doi:10.1016/j.memsci.2008.06.039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem