Mostrar el registro sencillo del ítem
dc.contributor.author | Martí Calatayud, Manuel César | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.contributor.author | Sales, Sonia | es_ES |
dc.contributor.author | Mestre, Sergio | es_ES |
dc.date.accessioned | 2016-09-28T10:15:55Z | |
dc.date.available | 2016-09-28T10:15:55Z | |
dc.date.issued | 2013-01 | |
dc.identifier.issn | 1944-3994 | |
dc.identifier.uri | http://hdl.handle.net/10251/70564 | |
dc.description.abstract | In this article, the innovative cation-exchange membranes obtained from ceramic materials are presented. Different microporous ceramic supports were obtained from an initial mixture of alumina and kaolin, to which a varying content of starch was added in order to obtain supports with different pore size distributions. The deposition of zirconium phosphate into the porous supports generates membranes with cation-exchange properties. The fabrication of ion-exchange membranes which could resist aggressive electrolytes such as strong oxidizing spent chromium plating baths or radioactive solutions would allow the application of electrodialysis for the decontamination and regeneration of these industrial effluents. The performance of the manufactured membranes was studied in nickel sulfate solutions by means of chronopotentiometry. An increase of the membrane voltage drop during chronopotentiometric measurements was observed in some membranes, which seems to be a consequence of concentration polarization phenomena resulting from the ionic transfer occurred through the membranes. Current voltage curves were obtained for the different ceramic membranes, allowing the calculation of their ohmic resistance. The ohmic resistance of the membranes increased when the open porosity (OP) of the samples was incremented up to a value of 50%. For values of OP higher than 50%, the resistance of the membranes decreased significantly with porosity. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Desalination and Water Treatment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ceramic cation-exchange membranes | es_ES |
dc.subject | Chronopotentiometry | es_ES |
dc.subject | Zirconium phosphate | es_ES |
dc.subject | Electrodialysis | es_ES |
dc.subject | Industrial waste water reuse | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/19443994.2012.714629 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Martí Calatayud, MC.; García Gabaldón, M.; Pérez-Herranz, V.; Sales, S.; Mestre, S. (2013). Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions. Desalination and Water Treatment. 51(1-3):597-605. doi:10.1080/19443994.2012.714629 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/19443994.2012.714629 | es_ES |
dc.description.upvformatpinicio | 597 | es_ES |
dc.description.upvformatpfin | 605 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.description.issue | 1-3 | es_ES |
dc.relation.senia | 232152 | es_ES |
dc.identifier.eissn | 1944-3986 | |
dc.description.references | L. Harttinger, Handbook of Effluent Treatment and Recycling for The Metal Finishing Industry, Finishing Publications Ltd.; ASM International, Stevenage 1994. | es_ES |
dc.description.references | Balagopal, S., Landro, T., Zecevic, S., Sutija, D., Elangovan, S., & Khandkar, A. (1999). Selective sodium removal from aqueous waste streams with NaSicon ceramics. Separation and Purification Technology, 15(3), 231-237. doi:10.1016/s1383-5866(98)00104-x | es_ES |
dc.description.references | Hobbs, D. . (1999). Caustic recovery from alkaline nuclear waste by an electrochemical separation process. Separation and Purification Technology, 15(3), 239-253. doi:10.1016/s1383-5866(98)00105-1 | es_ES |
dc.description.references | Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7 | es_ES |
dc.description.references | García-Gabaldón, M., Pérez-Herranz, V., Sánchez, E., & Mestre, S. (2006). Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in eletrochemical reactors. Journal of Membrane Science, 280(1-2), 536-544. doi:10.1016/j.memsci.2006.02.007 | es_ES |
dc.description.references | Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9 | es_ES |
dc.description.references | Tripathi, B. P., & Shahi, V. K. (2007). SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038 | es_ES |
dc.description.references | Clearfield, A., & Smith, G. D. (1969). Crystallography and structure of .alpha.-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemistry, 8(3), 431-436. doi:10.1021/ic50073a005 | es_ES |
dc.description.references | Alberti, G., Bernasconi, M. G., Casciola, M., & Costantino, U. (1978). Ion exchange of some divalent and trivalent cations on the surface of zirconium acid phosphate micro-crystals. Journal of Chromatography A, 160(1), 109-115. doi:10.1016/s0021-9673(00)91786-2 | es_ES |
dc.description.references | Yaroslavtsev, A. B. (2003). Ion DiffusionThrow Interface in Heterogeneous Solid Systems with the Modified Surface. Defect and Diffusion Forum, 216-217, 133-140. doi:10.4028/www.scientific.net/ddf.216-217.133 | es_ES |
dc.description.references | Yaroslavtsev, A. B. (2009). Composite materials with ionic conductivity: from inorganic composites to hybrid membranes. Russian Chemical Reviews, 78(11), 1013-1029. doi:10.1070/rc2009v078n11abeh004066 | es_ES |
dc.description.references | Yaroslavtsev, A. B., Nikonenko, V. V., & Zabolotsky, V. I. (2003). Ion transfer in ion-exchange and membrane materials. Russian Chemical Reviews, 72(5), 393-421. doi:10.1070/rc2003v072n05abeh000797 | es_ES |
dc.description.references | Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785 | es_ES |
dc.description.references | Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e | es_ES |
dc.description.references | Sistat, P., & Pourcelly, G. (1997). Chronopotentiometric response of an ion-exchange membrane in the underlimiting current-range. Transport phenomena within the diffusion layers. Journal of Membrane Science, 123(1), 121-131. doi:10.1016/s0376-7388(96)00210-4 | es_ES |
dc.description.references | Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 | es_ES |
dc.description.references | García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Evaluation of two ion-exchange membranes for the transport of tin in the presence of hydrochloric acid. Journal of Membrane Science, 371(1-2), 65-74. doi:10.1016/j.memsci.2011.01.015 | es_ES |
dc.description.references | GARCIAGABALDON, M., PEREZHERRANZ, V., SANCHEZ, E., & MESTRE, S. (2008). Effect of tin concentration on the electrical properties of ceramic membranes used as separators in electrochemical reactors. Journal of Membrane Science, 323(1), 213-220. doi:10.1016/j.memsci.2008.06.039 | es_ES |