José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b
Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z
Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084
[+]
José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b
Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z
Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084
Ramón, D. J., & Yus, M. (2005). Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angewandte Chemie International Edition, 44(11), 1602-1634. doi:10.1002/anie.200460548
Guillena, G., Ramón, D. J., & Yus, M. (2007). Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron: Asymmetry, 18(6), 693-700. doi:10.1016/j.tetasy.2007.03.002
Yu, J., Shi, F., & Gong, L.-Z. (2011). Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Accounts of Chemical Research, 44(11), 1156-1171. doi:10.1021/ar2000343
Huang, Y., Walji, A. M., Larsen, C. H., & MacMillan, D. W. C. (2005). Enantioselective Organo-Cascade Catalysis. Journal of the American Chemical Society, 127(43), 15051-15053. doi:10.1021/ja055545d
Enders, D., Hüttl, M. R. M., Grondal, C., & Raabe, G. (2006). Control of four stereocentres in a triple cascade organocatalytic reaction. Nature, 441(7095), 861-863. doi:10.1038/nature04820
Galzerano, P., Pesciaioli, F., Mazzanti, A., Bartoli, G., & Melchiorre, P. (2009). Asymmetric Organocatalytic Cascade Reactions with α-Substituted α,β-Unsaturated Aldehydes. Angewandte Chemie International Edition, 48(42), 7892-7894. doi:10.1002/anie.200903803
Ramachary, D. B., Chowdari, N. S., & Barbas, C. F. (2003). Organocatalytic Asymmetric Domino Knoevenagel/Diels–Alder Reactions: A Bioorganic Approach to the Diastereospecific and Enantioselective Construction of Highly Substituted Spiro[5,5]undecane-1,5,9-triones. Angewandte Chemie International Edition, 42(35), 4233-4237. doi:10.1002/anie.200351916
Ramachary, D. B., Anebouselvy, K., Chowdari, N. S., & Barbas, C. F. (2004). Direct Organocatalytic Asymmetric Heterodomino Reactions: The Knoevenagel/Diels−Alder/Epimerization Sequence for the Highly Diastereoselective Synthesis of Symmetrical and Nonsymmetrical Synthons of Benzoannelated Centropolyquinanes. The Journal of Organic Chemistry, 69(18), 5838-5849. doi:10.1021/jo049581r
Ramachary, D. B., & Barbas, C. F. (2004). Towards Organo-Click Chemistry: Development of Organocatalytic Multicomponent Reactions Through Combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen Cycloaddition Reactions. Chemistry - A European Journal, 10(21), 5323-5331. doi:10.1002/chem.200400597
Evans, C. G., & Gestwicki, J. E. (2009). Enantioselective Organocatalytic Hantzsch Synthesis of Polyhydroquinolines. Organic Letters, 11(14), 2957-2959. doi:10.1021/ol901114f
Corma, A., & Garcia, H. (2006). Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis. Advanced Synthesis & Catalysis, 348(12-13), 1391-1412. doi:10.1002/adsc.200606192
Liu, X., Wang, P., Yang, Y., Wang, P., & Yang, Q. (2010). (R)-(+)-Binol-Functionalized Mesoporous Organosilica as a Highly Efficient Pre-Chiral Catalyst for Asymmetric Catalysis. Chemistry - An Asian Journal, 5(5), 1232-1239. doi:10.1002/asia.200900737
Wang, P., Liu, X., Yang, J., Yang, Y., Zhang, L., Yang, Q., & Li, C. (2009). Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis. Journal of Materials Chemistry, 19(42), 8009. doi:10.1039/b913808k
Font, D., Jimeno, C., & Pericàs, M. A. (2006). Polystyrene-Supported Hydroxyproline: An Insoluble, Recyclable Organocatalyst for the Asymmetric Aldol Reaction in Water. Organic Letters, 8(20), 4653-4655. doi:10.1021/ol061964j
Zamboulis, A., Rahier, N. J., Gehringer, M., Cattoën, X., Niel, G., Bied, C., … Man, M. W. C. (2009). Silica-supported l-proline organocatalysts for asymmetric aldolisation. Tetrahedron: Asymmetry, 20(24), 2880-2885. doi:10.1016/j.tetasy.2009.11.024
Fan, X., Sayalero, S., & Pericàs, M. A. (2012). Asymmetric α-Amination of Aldehydes Catalyzed by PS-Diphenylprolinol Silyl Ethers: Remediation of Catalyst Deactivation for Continuous Flow Operation. Advanced Synthesis & Catalysis, 354(16), 2971-2976. doi:10.1002/adsc.201200887
Wang, C. A., Zhang, Z. K., Yue, T., Sun, Y. L., Wang, L., Wang, W. D., … Wang, W. (2012). «Bottom-Up» Embedding of the Jørgensen-Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chemistry - A European Journal, 18(22), 6718-6723. doi:10.1002/chem.201200753
Riente, P., Yadav, J., & Pericàs, M. A. (2012). A Click Strategy for the Immobilization of MacMillan Organocatalysts onto Polymers and Magnetic Nanoparticles. Organic Letters, 14(14), 3668-3671. doi:10.1021/ol301515d
Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous Organocatalysis at Work: Functionalization of Hollow Periodic Mesoporous Organosilica Spheres with MacMillan Catalyst. Chemistry – A European Journal, 17(22), 6206-6213. doi:10.1002/chem.201100072
Bleschke, C., Schmidt, J., Kundu, D. S., Blechert, S., & Thomas, A. (2011). A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst. Advanced Synthesis & Catalysis, 353(17), 3101-3106. doi:10.1002/adsc.201100674
Rueping, M., Sugiono, E., Steck, A., & Theissmann, T. (2010). Synthesis and Application of Polymer-Supported Chiral Brønsted Acid Organocatalysts. Advanced Synthesis & Catalysis, 352(2-3), 281-287. doi:10.1002/adsc.200900746
Kasaplar, P., Riente, P., Hartmann, C., & Pericàs, M. A. (2012). A Polystyrene-Supported, Highly Recyclable Squaramide Organocatalyst for the Enantioselective Michael Addition of 1,3-Dicarbonyl Compounds to β-Nitrostyrenes. Advanced Synthesis & Catalysis, 354(16), 2905-2910. doi:10.1002/adsc.201200526
Wang, W., Ma, X., Wan, J., Cao, J., & Tang, Q. (2012). Preparation and confinement effect of a heterogeneous 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric aldol addition in aqueous medium. Dalton Transactions, 41(18), 5715. doi:10.1039/c2dt12390h
Cancogni, D., Mandoli, A., Jumde, R. P., & Pini, D. (2012). Silicone-Supported Cinchona Alkaloid Derivatives as Insoluble Organocatalysts in the Enantioselective Dimerization of Ketenes. European Journal of Organic Chemistry, 2012(7), 1336-1345. doi:10.1002/ejoc.201101320
Jumde, R. P., Mandoli, A., De Lorenzi, F., Pini, D., & Salvadori, P. (2010). Simple Preparation of Dimeric Cinchona Alkaloid Derivatives on Polystyrene Supports and a Highly Enantioselective Catalytic Heterogeneous Dimerization of Ketenes. Advanced Synthesis & Catalysis, 352(9), 1434-1440. doi:10.1002/adsc.201000165
Youk, S. H., Oh, S. H., Rho, H. S., Lee, J. E., Lee, J. W., & Song, C. E. (2009). A polymer-supported Cinchona-based bifunctional sulfonamide catalyst: a highly enantioselective, recyclable heterogeneous organocatalyst. Chemical Communications, (16), 2220. doi:10.1039/b821483b
Connon, S. J. (2006). Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry - A European Journal, 12(21), 5418-5427. doi:10.1002/chem.200501076
Siau, W.-Y., & Wang, J. (2011). Asymmetric organocatalytic reactions by bifunctional amine-thioureas. Catalysis Science & Technology, 1(8), 1298. doi:10.1039/c1cy00271f
Miyabe, H., & Takemoto, Y. (2008). Discovery and Application of Asymmetric Reaction by Multi-Functional Thioureas. Bulletin of the Chemical Society of Japan, 81(7), 785-795. doi:10.1246/bcsj.81.785
Yu, P., He, J., & Guo, C. (2008). 9-Thiourea Cinchona alkaloid supported on mesoporous silica as a highly enantioselective, recyclable heterogeneous asymmetric catalyst. Chemical Communications, (20), 2355. doi:10.1039/b800640g
Gleeson, O., Davies, G.-L., Peschiulli, A., Tekoriute, R., Gun’ko, Y. K., & Connon, S. J. (2011). The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Organic & Biomolecular Chemistry, 9(22), 7929. doi:10.1039/c1ob06110k
Vakulya, B., Varga, S., Csámpai, A., & Soós, T. (2005). Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters, 7(10), 1967-1969. doi:10.1021/ol050431s
Chen, W., Du, W., Duan, Y.-Z., Wu, Y., Yang, S.-Y., & Chen, Y.-C. (2007). Enantioselective 1,3-Dipolar Cycloaddition of Cyclic Enones Catalyzed by Multifunctional Primary Amines: Beneficial Effects of Hydrogen Bonding. Angewandte Chemie International Edition, 46(40), 7667-7670. doi:10.1002/anie.200702618
Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j
Lakshmi Kantam, M., & Sreekanth, P. (1999). Catalysis Letters, 57(4), 227-231. doi:10.1023/a:1019012019131
Sartori, G. (2004). Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes. Journal of Catalysis, 222(2), 410-418. doi:10.1016/j.jcat.2003.11.016
Wang, Q., & Shantz, D. F. (2010). Nitroaldol reactions catalyzed by amine-MCM-41 hybrids. Journal of Catalysis, 271(2), 170-177. doi:10.1016/j.jcat.2010.01.010
Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515
SOLDI, L., FERSTL, W., LOEBBECKE, S., MAGGI, R., MALMASSARI, C., SARTORI, G., & YADA, S. (2008). Use of immobilized organic base catalysts for continuous-flow fine chemical synthesis. Journal of Catalysis, 258(2), 289-295. doi:10.1016/j.jcat.2008.07.005
Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, (35), 4481. doi:10.1039/b508833j
McCooey, S. H., & Connon, S. J. (2005). Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition, 44(39), 6367-6370. doi:10.1002/anie.200501721
Hynes, P. S., Stupple, P. A., & Dixon, D. J. (2008). Organocatalytic Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-Paroxetine. Organic Letters, 10(7), 1389-1391. doi:10.1021/ol800108u
Okino, T., Hoashi, Y., Furukawa, T., Xu, X., & Takemoto, Y. (2005). Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. Journal of the American Chemical Society, 127(1), 119-125. doi:10.1021/ja044370p
Xu, F., Corley, E., Zacuto, M., Conlon, D. A., Pipik, B., Humphrey, G., … Tschaen, D. (2010). Asymmetric Synthesis of a Potent, Aminopiperidine-Fused Imidazopyridine Dipeptidyl Peptidase IV Inhibitor. The Journal of Organic Chemistry, 75(5), 1343-1353. doi:10.1021/jo902573q
Liu, J., Wang, X., Ge, Z., Sun, Q., Cheng, T., & Li, R. (2011). Solvent-free organocatalytic Michael addition of diethyl malonate to nitroalkenes: the practical synthesis of Pregabalin and γ-nitrobutyric acid derivatives. Tetrahedron, 67(3), 636-640. doi:10.1016/j.tet.2010.11.053
Elsner, P., Jiang, H., Nielsen, J. B., Pasi, F., & Jørgensen, K. A. (2008). A modular and organocatalytic approach to γ-butyrolactone autoregulators from Streptomycetes. Chemical Communications, (44), 5827. doi:10.1039/b812698d
Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476l
Poe, S. L., Kobašlija, M., & McQuade, D. T. (2007). Mechanism and Application of a Microcapsule Enabled Multicatalyst Reaction. Journal of the American Chemical Society, 129(29), 9216-9221. doi:10.1021/ja071706x
[-]