- -

Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors

Show full item record

Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors. Chemical Engineering Communications. 202(3):279-293. doi:10.1080/00986445.2013.841146

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71097

Files in this item

Item Metadata

Title: Ozonation Kinetics of Acid Red 27 Azo Dye: A novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Issued date:
Abstract:
A procedure for the determination of initial parameter values for quadratically convergent optimization methods is proposed using artificial neural networks coupled with a non-stationary gas-liquid reaction model. The ...[+]
Subjects: Artificial neural network , Bubble column reactor , Kinetic rate constant estimation , Ozonation
Copyrigths: Cerrado
Source:
Chemical Engineering Communications. (issn: 0098-6445 ) (eissn: 1563-5201 )
DOI: 10.1080/00986445.2013.841146
Publisher:
Taylor & Francis
Publisher version: http://dx.doi.org/10.1080/00986445.2013.841146
Thanks:
J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).
Type: Artículo

This item appears in the following Collection(s)

Show full item record