Mostrar el registro sencillo del ítem
dc.contributor.author | Neshchadin, Dmytro | es_ES |
dc.contributor.author | Palumbo, Fabrizio | es_ES |
dc.contributor.author | Sinicropi, M. Stefania | es_ES |
dc.contributor.author | Andreu Ros, María Inmaculada | es_ES |
dc.contributor.author | Gescheidt, Georg | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.date.accessioned | 2016-10-04T11:01:28Z | |
dc.date.available | 2016-10-04T11:01:28Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 2041-6520 | |
dc.identifier.uri | http://hdl.handle.net/10251/71110 | |
dc.description.abstract | Cholesterol is one of the most important building blocks of cell membranes. It is also one of the main targets for oxidation via Type I hydrogen abstraction (HA), which leads to a variety of physiological consequences in the human body. To provide a deeper understanding of the oxidation mechanism, steady-state H-1 CIDNP, steady-state and laser-flash photolysis in combination with quantum mechanical calculations were applied to study HA in three model systems. The experiments involved photoinduced reactions in a cholesterol-benzophenone mixture and two derivatives, in which aminocholestene and benzophenone are covalently coupled yielding a dyad. It has been found, that a specific orientation of the benzophenone moiety toward the allylic hydrogens of cholesterol/aminocholestene is crucial for the efficient HA. Such a confined topology may play an important role for the particular oxidation of cholesterol in cell membranes. | es_ES |
dc.description.sponsorship | Financial support from the MICINN (Grants CTQ2009-13699 and CTQ2010-14882), from the Generalitat Valenciana (Grisolia fellowship for F. P.) from the Carlos III Institute of Health (Grant RIRAAF, RETICS program and Miguel Servet Contract CP11/00154 for I. A.) and TU Graz is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LASER FLASH-PHOTOLYSIS | es_ES |
dc.subject | TIME-RESOLVED CIDNP | es_ES |
dc.subject | HYDROGEN ABSTRACTION | es_ES |
dc.subject | LIPID-PEROXIDATION | es_ES |
dc.subject | BENZOPHENONE | es_ES |
dc.subject | MECHANISMS | es_ES |
dc.subject | CHEMISTRY | es_ES |
dc.subject | MEMBRANES | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Topological control in radical reactions of cholesterol in model dyads | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3sc22109a | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CP11%2F00154/ES/CP11%2F00154/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Neshchadin, D.; Palumbo, F.; Sinicropi, MS.; Andreu Ros, MI.; Gescheidt, G.; Miranda Alonso, MÁ. (2013). Topological control in radical reactions of cholesterol in model dyads. Chemical Science. 4(4):1608-1614. https://doi.org/10.1039/c3sc22109a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3sc22109a | es_ES |
dc.description.upvformatpinicio | 1608 | es_ES |
dc.description.upvformatpfin | 1614 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 237636 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.description.references | Schroepfer, G. J. (2000). Oxysterols: Modulators of Cholesterol Metabolism and Other Processes. Physiological Reviews, 80(1), 361-554. doi:10.1152/physrev.2000.80.1.361 | es_ES |
dc.description.references | Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067. doi:10.1039/b922183m | es_ES |
dc.description.references | Girotti, A. W., Bachowski, G. J., & Jordan, J. E. (1987). Lipid peroxidation in erythrocyte membranes: Cholesterol product analysis in photosensitized and xanthine oxidase-catalyzed reactions. Lipids, 22(6), 401-408. doi:10.1007/bf02537268 | es_ES |
dc.description.references | Iuliano, L. (2011). Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chemistry and Physics of Lipids, 164(6), 457-468. doi:10.1016/j.chemphyslip.2011.06.006 | es_ES |
dc.description.references | Neshchadin, D., Levinn, R., Gescheidt, G., & Batchelor, S. N. (2010). Probing the Antioxidant Activity of Polyphenols by CIDNP: From Model Compounds to Green Tea and Red Wine. Chemistry - A European Journal, 16(23), 7008-7016. doi:10.1002/chem.200903238 | es_ES |
dc.description.references | Andreu, I., Neshchadin, D., Rico, E., Griesser, M., Samadi, A., Morera, I. M., … Miranda, M. A. (2011). Probing Lipid Peroxidation by Using Linoleic Acid and Benzophenone. Chemistry - A European Journal, 17(36), 10089-10096. doi:10.1002/chem.201100983 | es_ES |
dc.description.references | Encinas, M. V., & Scaiano, J. C. (1981). Reaction of benzophenone triplets with allylic hydrogens. Laser flash photolysis study. Journal of the American Chemical Society, 103(21), 6393-6397. doi:10.1021/ja00411a021 | es_ES |
dc.description.references | Nau, W. M., Cozens, F. L., & Scaiano, J. C. (1996). Reactivity and Efficiency of Singlet- and Triplet-Excited States in Intermolecular Hydrogen Abstraction Reactions. Journal of the American Chemical Society, 118(9), 2275-2282. doi:10.1021/ja9535118 | es_ES |
dc.description.references | Andreu, I., Morera, I. M., Boscá, F., Sanchez, L., Camps, P., & Miranda, M. A. (2008). Cholesterol–diaryl ketone stereoisomeric dyads as models for «clean» type I and type II photooxygenation mechanisms. Organic & Biomolecular Chemistry, 6(5), 860. doi:10.1039/b718068c | es_ES |
dc.description.references | Andreu, I., Boscá, F., Sanchez, L., Morera, I. M., Camps, P., & Miranda, M. A. (2006). Efficient and Selective Photogeneration of Cholesterol-Derived Radicals by Intramolecular Hydrogen Abstraction in Model Dyads. Organic Letters, 8(20), 4597-4600. doi:10.1021/ol061854c | es_ES |
dc.description.references | Closs, G. L., & Miller, R. J. (1979). Laser flash photolysis with NMR detection. Microsecond time-resolved CIDNP: separation of geminate and random-phase processes. Journal of the American Chemical Society, 101(6), 1639-1641. doi:10.1021/ja00500a068 | es_ES |
dc.description.references | Vollenweider, J.-K., Fischer, H., Hennig, J., & Leuschner, R. (1985). Time-resolved CIDNP in laser flash photolysis of aliphatic ketones. A quantitative analysis. Chemical Physics, 97(2-3), 217-234. doi:10.1016/0301-0104(85)87033-6 | es_ES |
dc.description.references | Roth, H. D. (2008). Biradicals by triplet recombination of radical ion pairs. Photochemical & Photobiological Sciences, 7(5), 540. doi:10.1039/b800524a | es_ES |
dc.description.references | Goez, M., & Eckert, G. (2006). Photoinduced electron transfer sensitization investigated by chemically induced dynamic nuclear polarizatioin (CIDNP). Physical Chemistry Chemical Physics, 8(45), 5294. doi:10.1039/b609026e | es_ES |
dc.description.references | Closs, G. L., Miller, R. J., & Redwine, O. D. (1985). Time-resolved CIDNP: applications to radical and biradical chemistry. Accounts of Chemical Research, 18(7), 196-202. doi:10.1021/ar00115a001 | es_ES |
dc.description.references | Lönnfors, M., Engberg, O., Peterson, B. R., & Slotte, J. P. (2011). Interaction of 3β-Amino-5-cholestene with Phospholipids in Binary and Ternary Bilayer Membranes. Langmuir, 28(1), 648-655. doi:10.1021/la203589u | es_ES |
dc.description.references | Esterbauer, H., Gebicki, J., Puhl, H., & Jürgens, G. (1992). The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine, 13(4), 341-390. doi:10.1016/0891-5849(92)90181-f | es_ES |
dc.description.references | Gardner, H. W. (1989). Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biology and Medicine, 7(1), 65-86. doi:10.1016/0891-5849(89)90102-0 | es_ES |
dc.description.references | Andreu, I., Palumbo, F., Tilocca, F., Morera, I. M., Boscá, F., & Miranda, M. A. (2011). Solvent Effects in Hydrogen Abstraction from Cholesterol by Benzophenone Triplet Excited State. Organic Letters, 13(15), 4096-4099. doi:10.1021/ol2016059 | es_ES |
dc.description.references | Scaiano, J. C., McGimpsey, W. G., Leigh, W. J., & Jakobs, S. (1987). Kinetic and spectroscopic study of a ketyl-phenoxy biradical produced by a remote hydrogen abstraction. The Journal of Organic Chemistry, 52(20), 4540-4544. doi:10.1021/jo00229a021 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001 | es_ES |
dc.description.references | Kaptein, R., & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization III (anomalous multiplets of radical coupling and disproportionation products). Chemical Physics Letters, 4(4), 214-216. doi:10.1016/0009-2614(69)80105-3 | es_ES |
dc.description.references | De Kanter, F. J. J., & Kaptein, R. (1982). CIDNP and triplet-state reactivity of biradicals. Journal of the American Chemical Society, 104(18), 4759-4766. doi:10.1021/ja00382a005 | es_ES |