- -

Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barredo Damas, Sergio es_ES
dc.contributor.author Alcaina Miranda, María Isabel es_ES
dc.contributor.author Iborra Clar, María Isabel es_ES
dc.contributor.author Mendoza Roca, José Antonio es_ES
dc.contributor.author Gemma, Matteo es_ES
dc.date.accessioned 2016-10-04T12:28:12Z
dc.date.available 2016-10-04T12:28:12Z
dc.date.issued 2011-03
dc.identifier.issn 1944-3994
dc.identifier.uri http://hdl.handle.net/10251/71122
dc.description.abstract Textile industries are considered as one of the most polluting among all the industrial sectors. Therefore, the disposal of textile effluents without the appropriate treatment entails high environmental risks. Moreover, and due to water shortage situations, industries are becoming aware of the need for investing in innovative treatment technologies for water reclamation, such as membrane filtration. This work studies the performance of three commercial ceramic ultrafiltration membranes treating raw effluents from a textile mill. The effect of both pH and molecular weight cut-off (MWCO) on membrane performance was determined while working on concentration mode. Results showed a noticeable influence of both pH and MWCO on process performance. The best results were obtained for the lowest pH tested (8). At higher pH values, higher fouling rates were achieved. On the other hand, higher fluxes were obtained as MWCO was increased but simultaneously, higher rates of membrane fouling were also observed. Permeate flux rate decreased as the feed solution was concentrated. However, this drop was more noticeable for the lower VRF values. The best overall results were obtained for the 50 kDa membrane operating at pH 8. TOC and COD removals up to 67% and 80%, respectively, were reached at these conditions. In the same way, nearly complete color and turbidity removals were achieved for all the membranes and operating conditions studied. Regarding these results, the combined process of MF/UF has been proven to be a feasible pre-treatment in order to reduce wastewater volume and produce a permeate of enough quality to be used as influent in the NF/RO stage. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ceramic membranes es_ES
dc.subject Textile wastewater es_ES
dc.subject Ultrafiltration es_ES
dc.subject Water reclamation es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5004/dwt.2011.2057
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Barredo Damas, S.; Alcaina Miranda, MI.; Iborra Clar, MI.; Mendoza Roca, JA.; Gemma, M. (2011). Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes. Desalination and Water Treatment. 27(1-3):81-89. doi:10.5004/dwt.2011.2057 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5004/dwt.2011.2057 es_ES
dc.description.upvformatpinicio 81 es_ES
dc.description.upvformatpfin 89 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1-3 es_ES
dc.relation.senia 215860 es_ES
dc.description.references Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269(1-2), 15-34. doi:10.1016/j.memsci.2005.06.014 es_ES
dc.description.references Amar, N. B., Kechaou, N., Palmeri, J., Deratani, A., & Sghaier, A. (2009). Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry. Journal of Hazardous Materials, 170(1), 111-117. doi:10.1016/j.jhazmat.2009.04.130 es_ES
dc.description.references Wijetunga, S., Li, X.-F., & Jian, C. (2010). Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 177(1-3), 792-798. doi:10.1016/j.jhazmat.2009.12.103 es_ES
dc.description.references Capar, G., Yilmaz, L., & Yetis, U. (2008). A membrane-based co-treatment strategy for the recovery of print- and beck-dyeing textile effluents. Journal of Hazardous Materials, 152(1), 316-323. doi:10.1016/j.jhazmat.2007.06.100 es_ES
dc.description.references Nora’aini, A., Norhidayah, A., & Jusoh, A. (2009). The role of reaction time in organic phase on the preparation of thin-film composite nanofiltration (TFC-NF) membrane for dye removal. Desalination and Water Treatment, 10(1-3), 181-191. doi:10.5004/dwt.2009.868 es_ES
dc.description.references Fersi, C., & Dhahbi, M. (2008). Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination, 222(1-3), 263-271. doi:10.1016/j.desal.2007.01.171 es_ES
dc.description.references Koyuncu, I., & Topacik, D. (2003). Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Separation and Purification Technology, 33(3), 283-294. doi:10.1016/s1383-5866(03)00088-1 es_ES
dc.description.references Van der Bruggen, B., Boussu, K., De Vreese, I., Van Baelen, G., Willemse, F., Goedemé, D., & Colen, W. (2005). Industrial process water recycling: Principles and examples. Environmental Progress, 24(4), 417-425. doi:10.1002/ep.10112 es_ES
dc.description.references Lobo, A., Cambiella, Á., Benito, J. M., Pazos, C., & Coca, J. (2006). Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal of Membrane Science, 278(1-2), 328-334. doi:10.1016/j.memsci.2005.11.016 es_ES
dc.description.references Almécija, M. C., Ibáñez, R., Guadix, A., & Guadix, E. M. (2007). Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. Journal of Membrane Science, 288(1-2), 28-35. doi:10.1016/j.memsci.2006.10.021 es_ES
dc.description.references He, Y., Li, G., Wang, H., Zhao, J., Su, H., & Huang, Q. (2008). Effect of operating conditions on separation performance of reactive dye solution with membrane process. Journal of Membrane Science, 321(2), 183-189. doi:10.1016/j.memsci.2008.04.056 es_ES
dc.description.references Majewska-Nowak, K. M. (2010). Application of ceramic membranes for the separation of dye particles. Desalination, 254(1-3), 185-191. doi:10.1016/j.desal.2009.11.026 es_ES
dc.description.references Jin, L., Ng, H. Y., & Ong, S. L. (2009). Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR). Water Science and Technology, 59(11), 2213-2218. doi:10.2166/wst.2009.256 es_ES
dc.description.references Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250(2), 623-628. doi:10.1016/j.desal.2009.09.037 es_ES
dc.description.references Ricq, L., Pierre, A., Reggiani, J.-C., Zaragoza-Piqueras, S., Pagetti, J., & Daufin, G. (1996). Effects of proteins on electrokinetic properties of inorganic membranes during ultra- and micro-filtration. Journal of Membrane Science, 114(1), 27-38. doi:10.1016/0376-7388(95)00248-0 es_ES
dc.description.references Narong, P., & James, A. E. (2006). Sodium chloride rejection by a UF ceramic membrane in relation to its surface electrical properties. Separation and Purification Technology, 49(2), 122-129. doi:10.1016/j.seppur.2005.09.005 es_ES
dc.description.references Bernat, X., Pihlajamäki, A., Fortuny, A., Bengoa, C., Stüber, F., Fabregat, A., … Font, J. (2009). Non-enhanced ultrafiltration of iron(III) with commercial ceramic membranes. Journal of Membrane Science, 334(1-2), 129-137. doi:10.1016/j.memsci.2009.02.024 es_ES
dc.description.references Kim, J.-O., Kim, S.-K., & Kim, R.-H. (2005). Filtration performance of ceramic membrane for the recovery of volatile fatty acids from liquid organic sludge. Desalination, 172(2), 119-127. doi:10.1016/j.desal.2004.06.199 es_ES
dc.description.references ZHAO, Y., XING, W., XU, N., & WONG, F. (2005). Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension. Journal of Membrane Science, 254(1-2), 81-88. doi:10.1016/j.memsci.2004.11.032 es_ES
dc.description.references Fernández, E., Benito, J. M., Pazos, C., & Coca, J. (2005). Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. Journal of Membrane Science, 246(1), 1-6. doi:10.1016/j.memsci.2004.04.007 es_ES
dc.description.references Byhlin, H., & Jönsson, A.-S. (2003). Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 151(1), 21-31. doi:10.1016/s0011-9164(02)00969-4 es_ES
dc.description.references Faibish, R. S., & Cohen, Y. (2001). Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1-2), 27-40. doi:10.1016/s0927-7757(01)00761-0 es_ES
dc.description.references Žabková, M., da Silva, E. A. B., & Rodrigues, A. E. (2007). Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. Journal of Membrane Science, 301(1-2), 221-237. doi:10.1016/j.memsci.2007.06.025 es_ES
dc.description.references Xu, N., Zhao, Y., Zhong, J., & Shi, J. (2002). Crossflow Microfiltration of Micro-Sized Mineral Suspensions Using Ceramic Membranes. Chemical Engineering Research and Design, 80(2), 215-221. doi:10.1205/026387602753501951 es_ES
dc.description.references Li, M., Zhao, Y., Zhou, S., Xing, W., & Wong, F.-S. (2007). Resistance analysis for ceramic membrane microfiltration of raw soy sauce. Journal of Membrane Science, 299(1-2), 122-129. doi:10.1016/j.memsci.2007.04.033 es_ES
dc.description.references Lin, C.-F., Yu-Chen Lin, A., Sri Chandana, P., & Tsai, C.-Y. (2009). Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline. Water Research, 43(2), 389-394. doi:10.1016/j.watres.2008.10.042 es_ES
dc.description.references Li, M., Zhao, Y., Zhou, S., & Xing, W. (2010). Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination, 256(1-3), 166-173. doi:10.1016/j.desal.2010.01.018 es_ES
dc.description.references Gadelle, F., Koros, W. J., & Schechter, R. S. (1996). Ultrafiltration of Surfactant and Aromatic/Surfactant Solutions Using Ceramic Membranes. Industrial & Engineering Chemistry Research, 35(10), 3687-3696. doi:10.1021/ie9507181 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem