Mostrar el registro sencillo del ítem
dc.contributor.author | Hojjati-Talemi, Reza | es_ES |
dc.contributor.author | Wahab, Magd Abdel | es_ES |
dc.contributor.author | Giner Maravilla, Eugenio | es_ES |
dc.contributor.author | Sabsabi, Mohamad | es_ES |
dc.date.accessioned | 2016-10-04T12:40:04Z | |
dc.date.available | 2016-10-04T12:40:04Z | |
dc.date.issued | 2013-10 | |
dc.identifier.issn | 1023-8883 | |
dc.identifier.uri | http://hdl.handle.net/10251/71131 | |
dc.description.abstract | Fretting fatigue is a complex tribological phenomenon that can cause premature failure of connected components that have small relative oscillatory movement. The fraction of fretting fatigue lifetime spent in crack initiation and in crack propagation depends on many factors, e.g., contact stresses, amount of slip, frequency, environmental conditions, etc., and varies from one application to another. Therefore, both crack initiation and propagation phases are important in analysing fretting fatigue. In this investigation, a numerical approach is used to predict these two portions and estimate fretting fatigue failure lifetime under a conformal contact configuration. For this purpose, an uncoupled damage evolution law based on principles of continuum damage mechanics is developed for modelling crack initiation. The extended finite element method approach is used for calculating crack propagation lifetimes. The estimated results are validated with previously reported experimental data and compared with other available methods in the literature. | es_ES |
dc.description.sponsorship | The authors wish to thank the Ghent University for the financial support received by the Special Funding of Ghent University, BOF (Bijzonder Onderzoeksfonds), in the framework of project (BOF 01N02410) and gratefully acknowledge the financial support provided by the Spanish Ministry of Economics and Competitiveness through the project DPI2010-20990. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Tribology Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fretting fatigue | es_ES |
dc.subject | CDM | es_ES |
dc.subject | XFEM | es_ES |
dc.subject | Partial slip | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Numerical estimation of fretting fatigue lifetime using damage and fracture mechanics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11249-013-0189-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/BOF//BOF 01N02410/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Hojjati-Talemi, R.; Wahab, MA.; Giner Maravilla, E.; Sabsabi, M. (2013). Numerical estimation of fretting fatigue lifetime using damage and fracture mechanics. Tribology Letters. 52(1):11-25. https://doi.org/10.1007/s11249-013-0189-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11249-013-0189-8 | es_ES |
dc.description.upvformatpinicio | 11 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 263325 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Special Research Fund, Ghent university | es_ES |
dc.contributor.funder | Ghent University | es_ES |
dc.description.references | Hills, D.A., Nowell, D.: Mechanics of Fretting Fatigue. Solid Mechanics and its Applications vol. 30. Kluwer Academic Publishers, Dordrecht (1994) | es_ES |
dc.description.references | Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J Mater. (JMSLA) 4, 767–778 (1970) | es_ES |
dc.description.references | Szolwinski, M.P., Farris, T.N.: Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear 221(1), 24–36 (1998) | es_ES |
dc.description.references | Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11(3), 149–165 (1988) | es_ES |
dc.description.references | Navarro, C., Muñoz, S., Domínguez, J.: On the use of multiaxial fatigue criteria for fretting fatigue life assessment. Int. J. Fatigue 30(1), 32–44 (2008) | es_ES |
dc.description.references | Giner, E., Tur, M., Vercher, A., Fuenmayor, F.J.: Numerical modelling of crack-contact interaction in 2D incomplete fretting contacts using X-FEM. Tribol. Int. 42(9), 1269–1275 (2009) | es_ES |
dc.description.references | Giner, E., Navarro, C., Sabsabi, M., Tur, M., Domínguez, J., Fuenmayor, F.J.: Fretting fatigue life prediction using the extended finite element method. Int. J. Mech. Sci. 53(3), 217–225 (2011) | es_ES |
dc.description.references | McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 14(4), 429–453 (1991) | es_ES |
dc.description.references | Findley, W.N., Brown University, Division of Engineering, United States, Office of Ordnance R.: A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. Division of Engineering, Brown University, Providence, RI (1958) | es_ES |
dc.description.references | Lee, H., Jin, O., Mall, S.: Fretting fatigue behavior of Ti–6Al–4 V with dissimilar mating materials. Int. J. Fatigue 26(4), 393–402 (2004) | es_ES |
dc.description.references | Murthy, H., Mseis, G., Farris, T.N.: Life estimation of Ti–6Al–4 V specimens subjected to fretting fatigue and effect of surface treatments. Tribol. Int. 42(9), 1304–1315 (2009) | es_ES |
dc.description.references | Crossland, B.: Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals (1956) | es_ES |
dc.description.references | Quraishi, S.M., Khonsari, M.M., Baek, D.K.: A thermodynamic approach for predicting fretting fatigue life. Tribol. Lett. 19(3), 169–175 (2005) | es_ES |
dc.description.references | Aghdam, A.B., Beheshti, A., Khonsari, M.M.: On the fretting crack nucleation with provision for size effect. Tribol. Int. 47, 32–43 (2012) | es_ES |
dc.description.references | Zhang, T., McHugh, P.E., Leen, S.B.: Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–272 (2012) | es_ES |
dc.description.references | Hojjati-Talemi, R., Wahab, M.A.: Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approach. Tribol. Int. 60, 176–186 (2013) | es_ES |
dc.description.references | Rooke, D.P., Jones, D.A.: Stress intensity factors in fretting fatigue. J. Strain Anal. Eng. Des. 14(1), 1–6 (1979) | es_ES |
dc.description.references | Kondoh, K., Mutoh, Y.: Crack behavior in the early stage of fretting fatigue fracture. In: Hoeppner, D.W., Chandrasekaran, V., Elliott, C.B. (eds) Fretinge Fatigue: Current Technology and Practices, ASTM STP 1367. American society for Testing and Materials, West Conshohocken, PA (2000) | es_ES |
dc.description.references | Nicholas, T., Hutson, A., John, R., Olson, S.: A fracture mechanics methodology assessment for fretting fatigue. Int. J. Fatigue 25(9–11), 1069–1077 (2003) | es_ES |
dc.description.references | Muñoz, S., Navarro, C., Domínguez, J.: Application of fracture mechanics to estimate fretting fatigue endurance curves. Eng. Fract. Mech. 74(14), 2168–2186 (2007) | es_ES |
dc.description.references | Navarro, C., Muñoz, S., Domínguez, J.: Influence of the initiation length in predictions of life in Fretting Fatigue. Strain 47, e283–e291 (2011) | es_ES |
dc.description.references | Sabsabi, M., Giner, E., Fuenmayor, F.J.: Experimental fatigue testing of a fretting complete contact and numerical life correlation using X-FEM. Int. J. Fatigue 33(6), 811–822 (2011) | es_ES |
dc.description.references | Hojjati-Talemi, R., AbdelWahab, M., De Baets, P.: Numerical investigation into effect of contact geometry on fretting fatigue crack propagation lifetime. Tribol. Trans. 55(3), 365–375 (2012) | es_ES |
dc.description.references | Talemi, R.H., Wahab, M.A., Baets, P.D.: Numerical modelling of fretting fatigue. J. Phys: Conf. Ser. 305(1), 012061 (2011) | es_ES |
dc.description.references | Lemaitre, J.: Coupled elasto-plasticity and damage constitutive equations. Comput. Meth. Appl. Mech. Eng. 51(1–3), 31–49 (1985) | es_ES |
dc.description.references | Mutoh, Y., Xu, J.Q., Kondoh K.: Observations and analysis of fretting fatigue crack initiation and propagation. In: Mutoh, Y., Kinyon, S.E., Hoeppner, D.W. (eds) Fretting Fatigue: Advances In Basic Understanding And Applications. Stp, vol. 1425, pp. 61–75. ASTM International, West Conshohocken, PA (2003) | es_ES |
dc.description.references | Talemi, R.H., Wahab, M.A.: Finite element analysis of localized plasticity in Al 2024-T3 subjected to fretting fatigue. Tribol. Trans. 55(6), 805–814 (2012) | es_ES |
dc.description.references | Kindervater, C.M., Johnson, A., Kohlgrüber, D., Lützenburger, M.: Crash and High Velocity Impact Simulation Methodologies for Aircraft Structures. Structural Failure and Plasticity (IMPLAST 2000) IMPLAST (2000) | es_ES |
dc.description.references | Kachanov, L.M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. 8, 26–31 (1958) | es_ES |
dc.description.references | Lemaitre, J.: Formulation and identification of damage kinetic constitutive equations. In: Krajcinovic, D., Lemaitre J. (eds.) Continuum Damage Mechanics: Theory and Applications CISM Courses and Lectures No. 295, pp. 37–99. Springer, Wien (1987) | es_ES |
dc.description.references | Lemaitre, J.: Engineering Damage Mechanics. Springer, The Netherlands (2005) | es_ES |
dc.description.references | Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80(2), 233–245 (1984) | es_ES |
dc.description.references | Marmi, A.K., Habraken, A.M., Duchene, L.: Multiaxial fatigue damage modelling at macro scale of Ti–6Al–4 V alloy. Int. J. Fatigue 31(11–12), 2031–2040 (2009) | es_ES |
dc.description.references | El Haddad, M.H., Dowling, N.E., Topper, T.H., Smith, K.N.: J integral applications for short fatigue cracks at notches. Int. J. Fract. 16(1), 15–30 (1980) | es_ES |
dc.description.references | Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999) | es_ES |
dc.description.references | Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999) | es_ES |
dc.description.references | Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139(1–4), 289–314 (1996) | es_ES |
dc.description.references | Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45(22–23), 5675–5687 (2008) | es_ES |
dc.description.references | Lykins, C.D., Mall, S., Jain, V.K.: Combined experimental-numerical investigation of fretting fatigue crack initiation. Int. J. Fatigue 23(8), 703–711 (2001) | es_ES |
dc.description.references | Navarro, C., Garcia, M., Dominguez, J.: A procedure for estimating the total life in fretting fatigue. Fatigue Fract. Eng. Mater. Struct. 26(5), 459–468 (2003) | es_ES |
dc.description.references | Giner, E., Hills, D.A., Fuenmayor, F.J.: Complete elastic contact subject to cyclic shear in partial slip. J. Eng. Mech.-ASCE 131(11), 1146–1156 (2005) | es_ES |