- -

A flowgraph model for bladder carcinoma

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A flowgraph model for bladder carcinoma

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Navarro, Gregorio es_ES
dc.contributor.author García Mora, María Belén es_ES
dc.contributor.author Santamaría Navarro, Cristina es_ES
dc.contributor.author Pontones Moreno, José Luis es_ES
dc.date.accessioned 2016-10-05T12:28:36Z
dc.date.available 2016-10-05T12:28:36Z
dc.date.issued 2014-04-07
dc.identifier.issn 1742-4682
dc.identifier.uri http://hdl.handle.net/10251/71234
dc.description.abstract Background: Superficial bladder cancer has been the subject of numerous studies for many years, but the evolution of the disease still remains not well understood. After the tumor has been surgically removed, it may reappear at a similar level of malignancy or progress to a higher level. The process may be reasonably modeled by means of a Markov process. However, in order to more completely model the evolution of the disease, this approach is insufficient. The semi-Markov framework allows a more realistic approach, but calculations become frequently intractable. In this context, flowgraph models provide an efficient approach to successfully manage the evolution of superficial bladder carcinoma. Our aim is to test this methodology in this particular case. Results: We have built a successful model for a simple but representative case. Conclusion: The flowgraph approach is suitable for modeling of superficial bladder cancer. es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof Theoretical Biology and Medical Modelling es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Flowgraph model es_ES
dc.subject Bladder carcinoma es_ES
dc.subject Erlang distribution es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A flowgraph model for bladder carcinoma es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1742-4682-11-S1-S3
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Rubio Navarro, G.; García Mora, MB.; Santamaria Navarro, C.; Pontones Moreno, JL. (2014). A flowgraph model for bladder carcinoma. Theoretical Biology and Medical Modelling. 11(1):1-11. doi:10.1186/1742-4682-11-S1-S3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1742-4682-11-S1-S3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 286641 es_ES
dc.identifier.pmid 25080066 en_EN
dc.identifier.pmcid PMC4108884 en_EN
dc.description.references van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, Witjes JA, Zlotta AR: Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009, 56: 430-42. 10.1016/j.eururo.2009.06.028. es_ES
dc.description.references Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K: Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006, 49: 475-7. es_ES
dc.description.references Fernández-Gómez J, Madero R, Solsona E, Unda M, neiro LMP, González M, Portillo J, Ojea A, Pertusa C, Rodríguez-Molina J, Camacho J, Rabadan M, Astobieta A, Montesinos M, Isorna S, nola PM, Gimeno A, Blas M, neiro JAMP: The EORTC Tables Overestimate the Risk of Recurrence and Progression in Patients with Non-Muscle-Invasive Bladder Cancer Treated with Bacillus Calmette-Guerin: External Validation of the EORTC Risk Tables. Eur Urol. 2011, 60: 423-30. 10.1016/j.eururo.2011.05.033. es_ES
dc.description.references Butler RW, Huzurbazar AV: Stochastic network models for survival analysis. J Am Statist Assoc. 1997, 92: 246-57. 10.1080/01621459.1997.10473622. es_ES
dc.description.references Klein JP, Moeschberger ML: Suvival Analysis Techniques for Censored and Truncated Data. 2003, Springer, segunda es_ES
dc.description.references Neuts MF: Matrix Geometric Solutions in Stocastic Models An Algoritmic Approach. 1981, Baltimore: The Johns Hopkins University Press es_ES
dc.description.references Latouche G, Ramaswami V: Introduction to Matrix Analytic Methods in Stochastic Modeling. 1999, Philadelphia: SIAM es_ES
dc.description.references Pérez-Ocón R, Segovia MC: Modeling lifetimes using phase-type distributions. Risk, Reliability and Societal Safety, Proceedings of the European Safety and Reliability Conference 2007 (ESREL 2007). Edited by: Taylor & Francis re. 2007 es_ES
dc.description.references Huzurbazar A, Williams B: Incorporating Covariates in Flowgraph Models: Applications to Recurrent Event Data. Thecnometrics. 2010, 52: 198-208. 10.1198/TECH.2010.08044. es_ES
dc.description.references Collins DH, Huzurbazar AV: System reliability and safety assessment using non-parametric flowgraph models. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability December 1, 2008 vol 222 no 4. 2008, 667-664. es_ES
dc.description.references Huzurbazar A: Multistate Models, Flowgraph Models, and Semi-Markov Processes. Communications in Statistics - Theory and Methods. 2004, 33: 457-474. 10.1081/STA-120028678. es_ES
dc.description.references Huzurbazar A: Flowgraph Models for Multistate Time-To-Event Data. 2005, New York: Wiley es_ES
dc.description.references Mullen KM, van Stokkum IHM: nnls: The Lawson-Hanson algorithm for non-negative least squares (NNLS). 2012, [R package version 1.4], http://CRAN.R-project.org/package=nnls es_ES
dc.description.references Abate J, Whitt W: The Fourier-Series Method For Inverting Transforms Of Probability Distributions. Queueing Syst. 1992, 5-88. es_ES
dc.description.references Collins DH, Huzurbazar AV: Prognostic models based on statistical flowgraphs. Appl Stochastic Models Bus Ind. 2012, 28: 141-51. 10.1002/asmb.884. es_ES
dc.description.references OMS: International Classification of Tumours. 1999, 2™, World Health Organization, Histological typing of urinary bladder tumours, Volumen 10, Geneva es_ES
dc.description.references Lujan S: Modelización matemática de la multirrecidiva y heterogeneidad individual para el cálculo del riesgo biológico de recidiva y progresión del tumor vesical no músculo invasivo. PhD thesis. 2012, Universitat de València es_ES
dc.description.references Team RDC: R: A Language and Environment for Statistical Computing. 2010, R Foundation for Statistical Computing, Vienna, Austria, es_ES
dc.description.references Goulet V, Dutang C, Maechler M, Firth D, Shapira M, Stadelmann M, expm-developers@listsR-forgeR-projectorg: expm: Matrix exponential. 2011, [R package version 0.98-5], http://CRAN.R-project.org/package=expm es_ES
dc.description.references Bates D, Maechler M: Matrix: Sparse and Dense Matrix Classes and Methods. 2011, R package version 1.0-1. es_ES
dc.description.references Therneau T: survival: Survival analysis, including penalised likelihood. 2011, original Splus: R port by Thomas Lumley, [R package version 2.36-10], http://CRAN.R-project.org/package=survival es_ES
dc.description.references Jackson CH: Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software. 2011, 38 (8): 1-29. http://www.jstatsoft.org/v38/i08/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem