- -

On the continuous Cesàro operator in certain function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the continuous Cesàro operator in certain function spaces

Show simple item record

Files in this item

dc.contributor.author Albanese, Angela A. es_ES
dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Ricker, Werner Joseph es_ES
dc.date.accessioned 2016-10-05T14:36:43Z
dc.date.available 2016-10-05T14:36:43Z
dc.date.issued 2015
dc.identifier.issn 1385-1292
dc.identifier.uri http://hdl.handle.net/10251/71238
dc.description “The final publication is available at Springer via http://dx.doi.org/10.1007/s11117-014-0321-5" es_ES
dc.description.abstract Various properties of the (continuous) Cesàro operator C, acting on Banach and Fréchet spaces of continuous functions and L p-spaces, are investigated. For instance, the spectrum and point spectrum of C are completely determined and a study of certain dynamics of C is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of C acting in the various spaces is identified. es_ES
dc.description.sponsorship The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MTM2010-15200 es_ES
dc.relation GVA Prometeo II/2013/013 es_ES
dc.relation Alexander von Humboldt Foundation es_ES
dc.relation.ispartof Positivity es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cesàro operator es_ES
dc.subject Continuous function spaces es_ES
dc.subject Lp-spaces es_ES
dc.subject (Uniformly) mean ergodic operator es_ES
dc.subject Hypercyclic operator es_ES
dc.subject Supercyclic operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the continuous Cesàro operator in certain function spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11117-014-0321-5
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2015). On the continuous Cesàro operator in certain function spaces. Positivity. 19:659-679. doi:10.1007/s11117-014-0321-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11117-014-0321-5 es_ES
dc.description.upvformatpinicio 659 es_ES
dc.description.upvformatpfin 679 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.relation.senia 300634 es_ES
dc.relation.references Albanese, A.A.: Primary products of Banach spaces. Arch. Math. 66, 397–405 (1996) es_ES
dc.relation.references Albanese, A.A.: On subspaces of the spaces $$L^p_{\rm loc}$$ L loc p and of their strong duals. Math. Nachr. 197, 5–18 (1999) es_ES
dc.relation.references Albanese, A.A., Moscatelli, V.B.: Complemented subspaces of sums and products of copies of $$L^1 [0,1]$$ L 1 [ 0 , 1 ] . Rev. Mat. Univ. Complut. Madr. 9, 275–287 (1996) es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009) es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010) es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: $$C_0$$ C 0 -semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010) es_ES
dc.relation.references Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013) es_ES
dc.relation.references Bayart, F., Matheron, E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) es_ES
dc.relation.references Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc. 273, 579–594 (1982) es_ES
dc.relation.references Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005) es_ES
dc.relation.references Boyd, D.W.: The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) 29, 31–34 (1968) es_ES
dc.relation.references Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. (Szeged) 26, 125–137 (1965) es_ES
dc.relation.references Dierolf, S., Zarnadze, D.N.: A note on strictly regular Fréchet spaces. Arch. Math. 42, 549–556 (1984) es_ES
dc.relation.references Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory (2nd Printing). Wiley-Interscience, New York (1964) es_ES
dc.relation.references Galaz Fontes, F., Solís, F.J.: Iterating the Cesàro operators. Proc. Am. Math. Soc. 136, 2147–2153 (2008) es_ES
dc.relation.references Galaz Fontes, F., Ruiz-Aguilar, R.W.: Grados de ciclicidad de los operadores de Cesàro–Hardy. Misc. Mat. 57, 103–117 (2013) es_ES
dc.relation.references González, M., León-Saavedra, F.: Cyclic behaviour of the Cesàro operator on $$L_2(0,+\infty )$$ L 2 ( 0 , + ∞ ) . Proc. Am. Math. Soc. 137, 2049–2055 (2009) es_ES
dc.relation.references Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos. In: Universitext. Springer, London (2011) es_ES
dc.relation.references Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. In: Reprint of the 1952 Edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988) es_ES
dc.relation.references Krengel, U.: Ergodic theorems. In: De Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985) es_ES
dc.relation.references Leibowitz, G.M.: Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged) 35, 27–28 (1973) es_ES
dc.relation.references Leibowitz, G.M.: The Cesàro operators and their generalizations: examples in infinite-dimensional linear analysis. Am. Math. Mon. 80, 654–661 (1973) es_ES
dc.relation.references León-Saavedra, F., Piqueras-Lerena, A., Seoane-Sepúlveda, J.B.: Orbits of Cesàro type operators. Math. Nachr. 282, 764–773 (2009) es_ES
dc.relation.references Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974) es_ES
dc.relation.references Meise, R., Vogt, D.: Introduction to functional analysis. In: Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press; Oxford University Press, New York (1997) es_ES
dc.relation.references Metafune, G., Moscatelli, V.B.: Quojections and prequojections. In: Terzioğlu, T. (ed.) Advances in the Theory of Fréchet spaces. NATO ASI Series, vol. 287, pp. 235–254. Kluwer Academic Publishers, Dordrecht (1989) es_ES
dc.relation.references Moscatelli, V.B.: Fréchet spaces without norms and without bases. Bull. Lond. Math. Soc. 12, 63–66 (1980) es_ES
dc.relation.references Piszczek, K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010) es_ES
dc.relation.references Piszczek, K.: Barrelled spaces and mean ergodicity. Rev R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104, 5–11 (2010) es_ES
dc.relation.references Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980) es_ES


This item appears in the following Collection(s)

Show simple item record