Mostrar el registro sencillo del ítem
dc.contributor.author | Rodrigo Navarro, Aleixandre | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Saadeddin Saadeddin, Anas | es_ES |
dc.contributor.author | Garcia, Andres J. | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2016-10-06T09:40:42Z | |
dc.date.available | 2016-10-06T09:40:42Z | |
dc.date.issued | 2014-07-28 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10251/71292 | |
dc.description.abstract | Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind a5b1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications. | es_ES |
dc.description.sponsorship | The support from ERC through HealInSynergy 306990 is acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | LACTOCOCCUS-LACTIS | es_ES |
dc.subject | FIBRONECTIN CONFORMATION | es_ES |
dc.subject | BIOFILM FORMATION | es_ES |
dc.subject | POSITIVE ROLE | es_ES |
dc.subject | ADHESION | es_ES |
dc.subject | HYDROGELS | es_ES |
dc.subject | INTEGRIN | es_ES |
dc.subject | MORPHOGENESIS | es_ES |
dc.subject | SURFACES | es_ES |
dc.subject | BINDING | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/srep05849 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ | en_EN |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Rodrigo Navarro, A.; Rico Tortosa, PM.; Saadeddin Saadeddin, A.; Garcia, AJ.; Salmerón Sánchez, M. (2014). Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Scientific Reports. 4:5849-5859. https://doi.org/10.1038/srep05849 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/srep05849 | es_ES |
dc.description.upvformatpinicio | 5849 | es_ES |
dc.description.upvformatpfin | 5859 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.relation.senia | 287838 | es_ES |
dc.identifier.pmid | 25068919 | en_EN |
dc.identifier.pmcid | PMC5376178 | en_EN |
dc.contributor.funder | European Commission | |
dc.description.references | Sipe, J. D. Tissue engineering and reparative medicine. Ann N Y Acad Sci 961, 1–9 (2002). | es_ES |
dc.description.references | Griffith, L., Naughton, G. & Naughton, G. Tissue engineering--current challenges and expanding opportunities. Science (80-) 295, 1009 (2002). | es_ES |
dc.description.references | Grinnell, F. Focal adhesion sites and the removal of substratum-bound fibronectin. J Cell Biol 103, 2697–2706 (1986). | es_ES |
dc.description.references | Lutolf, M., Gilbert, P. & Blau, H. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009). | es_ES |
dc.description.references | Petrie, T., Raynor, J., Dumbauld, D., Lee, T. & Jagtap, S. Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Sci Transl Med 2, 45ra60 (2010). | es_ES |
dc.description.references | Weis, S., Lee, T. T., del Campo, A. & García, A. J. Dynamic cell-adhesive microenvironments and their effect on myogenic differentiation. Acta Biomater 9, 8059–66 (2013). | es_ES |
dc.description.references | Todd, S. J., Scurr, D. J., Gough, J. E., Alexander, M. R. & Ulijn, R. V. Enzyme-activated RGD ligands on functionalized poly(ethylene glycol) monolayers: surface analysis and cellular response. Langmuir 25, 7533–7539 (2009). | es_ES |
dc.description.references | Saadeddin, A. et al. Functional living biointerphases. Adv Healthc Mater 2, 1213–8 (2013). | es_ES |
dc.description.references | Aota, S., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269, 24756–61 (1994). | es_ES |
dc.description.references | Habimana, O. et al. Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7, 36 (2007). | es_ES |
dc.description.references | Mercier, C. et al. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46, 235–43 (2002). | es_ES |
dc.description.references | García, A. J. Get a grip: integrins in cell-biomaterial interactions. Biomaterials 26, 7525–9 (2005). | es_ES |
dc.description.references | Hynes, R. O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673–687 (2002). | es_ES |
dc.description.references | García, A. J., Vega, M. D. & Boettiger, D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10, 785–98 (1999). | es_ES |
dc.description.references | Ugarova, T. P. et al. Conformational transitions in the cell binding domain of fibronectin. Biochemistry 34, 4457–4466 (1995). | es_ES |
dc.description.references | McClary, K. B., Ugarova, T. & Grainger, D. W. Modulating fibroblast adhesion, spreading and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res 50, 428–439 (2000). | es_ES |
dc.description.references | Schoen, R. C., Bentley, K. L. & Klebe, R. J. Monoclonal antibody against human fibronectin which inhibits cell attachment. Hybridoma 1, 99–108 (1982). | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M. & García, A. J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 66, 247–59 (2003). | es_ES |
dc.description.references | Salmerón-Sánchez, M. et al. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32, 2099–105 (2011). | es_ES |
dc.description.references | Oliveira, A. P., Nielsen, J. & Förster, J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5, 39 (2005). | es_ES |
dc.description.references | Rivadeneira, J., Di Virgilio, A. L., Audisio, M. C., Boccaccini, A. R. & Gorustovich, A. A. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol 1–9 (2014). 10.1111/jam.12476. | es_ES |
dc.description.references | Bacon, J. A., Linseman, D. A. & Raczniak, T. J. In vitro cytotoxicity of tetracyclines and aminoglycosides in LLC-PK(1), MDCK and Chang continuous cell lines. Toxicol In Vitro 4, 384–8 (1990). | es_ES |
dc.description.references | Connell, S. R., Tracz, D. M., Nierhaus, K. H. & Taylor, D. E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47, 3675–3681 (2003). | es_ES |
dc.description.references | Dawson, R. Data for biochemical research (Oxford University Press, Oxford, 1989). | es_ES |
dc.description.references | Sabourin, L. A. & Rudnicki, M. A. The molecular regulation of myogenesis. Clin Genet 57, 16–25 (2001). | es_ES |
dc.description.references | Mancini, A. et al. Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 1, 36 (2011). | es_ES |
dc.description.references | Sastry, S. K. et al. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J Cell Biol 144, 1295–1309 (1999). | es_ES |
dc.description.references | Chatzizacharias, N. A., Kouraklis, G. P. & Theocharis, S. E. Disruption of FAK signaling: A side mechanism in cytotoxicity. Toxicology 245, 1–10 (2008). | es_ES |
dc.description.references | Clemente, C. F. M. Z., Corat, M. A. F., Saad, S. T. O. & Franchini, K. G. Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am J Physiol Regul Integr Comp Physiol 289, R862–R870 (2005). | es_ES |
dc.description.references | Quach, N. L. & Rando, T. A. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293, 38–52 (2006). | es_ES |
dc.description.references | Kirschner, C. M., Alge, D. L., Gould, S. T. & Anseth, K. S. Clickable, Photodegradable Hydrogels to Dynamically Modulate Valvular Interstitial Cell Phenotype. Adv Healthc Mater (2014) 10.1002/adhm.201300288. | es_ES |
dc.description.references | Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12, 458–65 (2013). | es_ES |
dc.description.references | Ulijn, R. V. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16, 2217 (2006). | es_ES |
dc.description.references | Makarenkova, H. et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal 2, ra55 (2009). | es_ES |
dc.description.references | Silva, A. K., Richard, C., Bessodes, M., Scherman, D. & Merten, O. W. Growth factor delivery approaches in hydrogels. Biomacromolecules 10, 9–18 (2009). | es_ES |
dc.description.references | Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23, 47–55 (2005). | es_ES |
dc.description.references | Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 18, 2679–+ (2006). | es_ES |
dc.description.references | Moon, J. J., Hahn, M. S., Kim, I., Nsiah, B. A. & West, J. L. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A 15, 579–585 (2009). | es_ES |
dc.description.references | Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & García, A. J. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A 107, 3323–3328 (2010). | es_ES |
dc.description.references | Patterson, J., Martino, M. M. & Hubbell, J. A. Biomimetic materials in tissue engineering. Mater Today 13, 14–22 (2010). | es_ES |
dc.description.references | Cortes-Perez, N. G., da Costa Medina, L. F., Lefevre, F., Langella, P. & Bermudez-Humaran, L. G. Production of biologically active CXC chemokines by Lactococcus lactis: evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine 26, 5778–5783 (2008). | es_ES |
dc.description.references | Cutler, S. M. & García, A. J. Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials 24, 1759–1770 (2003). | es_ES |
dc.description.references | Rico, P., González-García, C., Petrie, T. A., García, A. J. & Salmerón-Sánchez, M. Molecular assembly and biological activity of a recombinant fragment of fibronectin (FNIII7–10) on poly(ethyl acrylate). Colloids Surfaces B Biointerfaces 78, 310–316 (2010). | es_ES |
dc.description.references | Van Oss, C. J., Good, R. J. & Chaudhury, M. K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111, 378–390 (1986). | es_ES |
dc.description.references | Van Loosdrecht, M. C., Lyklema, J., Norde, W., Schraa, G. & Zehnder, A. J. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53, 1898–1901 (1987). | es_ES |
dc.description.references | Godon, J.-J., Jury, K., Shearman, C. A. & Gasson, M. J. The Lactococcus lactis sex-factor aggregation gene cluA. Mol Microbiol 12, 655–663 (1994). | es_ES |
dc.description.references | Giaouris, E., Chapot-Chartier, M.-P. P. & Briandet, R. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131, 2–9 (2009). | es_ES |
dc.description.references | Gulot, E. et al. Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two-photon excitation. Photochem Photobiol 75, 570–578 (2002). | es_ES |
dc.description.references | Habimana, O., Meyrand, M., Meylheuc, T., Kulakauskas, S. & Briandet, R. Genetic features of resident biofilms determine attachment of Listeria monocytogenes. Appl Environ Microbiol 75, 7814–7821 (2009). | es_ES |
dc.description.references | Rieu, A. et al. Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74, 4491–4497 (2008). | es_ES |
dc.description.references | Oxaran, V. et al. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 7, e50989 (2012). | es_ES |
dc.description.references | Petrie, T. A., Capadona, J. R., Reyes, C. D. & García, A. J. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 27, 5459–70 (2006). | es_ES |
dc.description.references | Schotte, L. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme Microb Technol 27, 761–765 (2000). | es_ES |
dc.description.references | Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72, 3916–3923 (2006). | es_ES |
dc.description.references | Zaidi, A. H., Bakkes, P. J., Krom, B. P., van der Mei, H. C. & Driessen, A. J. M. Cholate-stimulated biofilm formation by Lactococcus lactis cells. Appl Environ Microbiol 77, 2602–10 (2011). | es_ES |
dc.description.references | Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–82 (2012). | es_ES |
dc.description.references | Araujo, J. C. Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J Electron Microsc (Tokyo) 52, 429–433 (2003). | es_ES |
dc.description.references | Dufrêne, Y. F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3, 1132–8 (2008). | es_ES |
dc.description.references | Bhaduri, S. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neurotoxigenic Clostridium botulinum. Foodborne Pathog Dis 9, 172–4 (2012). | es_ES |