- -

Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo Navarro, Aleixandre es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Saadeddin Saadeddin, Anas es_ES
dc.contributor.author Garcia, Andres J. es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2016-10-06T09:40:42Z
dc.date.available 2016-10-06T09:40:42Z
dc.date.issued 2014-07-28
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/71292
dc.description.abstract Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind a5b1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications. es_ES
dc.description.sponsorship The support from ERC through HealInSynergy 306990 is acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject LACTOCOCCUS-LACTIS es_ES
dc.subject FIBRONECTIN CONFORMATION es_ES
dc.subject BIOFILM FORMATION es_ES
dc.subject POSITIVE ROLE es_ES
dc.subject ADHESION es_ES
dc.subject HYDROGELS es_ES
dc.subject INTEGRIN es_ES
dc.subject MORPHOGENESIS es_ES
dc.subject SURFACES es_ES
dc.subject BINDING es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep05849
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Rodrigo Navarro, A.; Rico Tortosa, PM.; Saadeddin Saadeddin, A.; Garcia, AJ.; Salmerón Sánchez, M. (2014). Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Scientific Reports. 4:5849-5859. https://doi.org/10.1038/srep05849 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/srep05849 es_ES
dc.description.upvformatpinicio 5849 es_ES
dc.description.upvformatpfin 5859 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 287838 es_ES
dc.identifier.pmid 25068919 en_EN
dc.identifier.pmcid PMC5376178 en_EN
dc.contributor.funder European Commission
dc.description.references Sipe, J. D. Tissue engineering and reparative medicine. Ann N Y Acad Sci 961, 1–9 (2002). es_ES
dc.description.references Griffith, L., Naughton, G. & Naughton, G. Tissue engineering--current challenges and expanding opportunities. Science (80-) 295, 1009 (2002). es_ES
dc.description.references Grinnell, F. Focal adhesion sites and the removal of substratum-bound fibronectin. J Cell Biol 103, 2697–2706 (1986). es_ES
dc.description.references Lutolf, M., Gilbert, P. & Blau, H. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009). es_ES
dc.description.references Petrie, T., Raynor, J., Dumbauld, D., Lee, T. & Jagtap, S. Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Sci Transl Med 2, 45ra60 (2010). es_ES
dc.description.references Weis, S., Lee, T. T., del Campo, A. & García, A. J. Dynamic cell-adhesive microenvironments and their effect on myogenic differentiation. Acta Biomater 9, 8059–66 (2013). es_ES
dc.description.references Todd, S. J., Scurr, D. J., Gough, J. E., Alexander, M. R. & Ulijn, R. V. Enzyme-activated RGD ligands on functionalized poly(ethylene glycol) monolayers: surface analysis and cellular response. Langmuir 25, 7533–7539 (2009). es_ES
dc.description.references Saadeddin, A. et al. Functional living biointerphases. Adv Healthc Mater 2, 1213–8 (2013). es_ES
dc.description.references Aota, S., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269, 24756–61 (1994). es_ES
dc.description.references Habimana, O. et al. Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7, 36 (2007). es_ES
dc.description.references Mercier, C. et al. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46, 235–43 (2002). es_ES
dc.description.references García, A. J. Get a grip: integrins in cell-biomaterial interactions. Biomaterials 26, 7525–9 (2005). es_ES
dc.description.references Hynes, R. O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673–687 (2002). es_ES
dc.description.references García, A. J., Vega, M. D. & Boettiger, D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10, 785–98 (1999). es_ES
dc.description.references Ugarova, T. P. et al. Conformational transitions in the cell binding domain of fibronectin. Biochemistry 34, 4457–4466 (1995). es_ES
dc.description.references McClary, K. B., Ugarova, T. & Grainger, D. W. Modulating fibroblast adhesion, spreading and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res 50, 428–439 (2000). es_ES
dc.description.references Schoen, R. C., Bentley, K. L. & Klebe, R. J. Monoclonal antibody against human fibronectin which inhibits cell attachment. Hybridoma 1, 99–108 (1982). es_ES
dc.description.references Keselowsky, B. G., Collard, D. M. & García, A. J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 66, 247–59 (2003). es_ES
dc.description.references Salmerón-Sánchez, M. et al. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32, 2099–105 (2011). es_ES
dc.description.references Oliveira, A. P., Nielsen, J. & Förster, J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5, 39 (2005). es_ES
dc.description.references Rivadeneira, J., Di Virgilio, A. L., Audisio, M. C., Boccaccini, A. R. & Gorustovich, A. A. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol 1–9 (2014). 10.1111/jam.12476. es_ES
dc.description.references Bacon, J. A., Linseman, D. A. & Raczniak, T. J. In vitro cytotoxicity of tetracyclines and aminoglycosides in LLC-PK(1), MDCK and Chang continuous cell lines. Toxicol In Vitro 4, 384–8 (1990). es_ES
dc.description.references Connell, S. R., Tracz, D. M., Nierhaus, K. H. & Taylor, D. E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47, 3675–3681 (2003). es_ES
dc.description.references Dawson, R. Data for biochemical research (Oxford University Press, Oxford, 1989). es_ES
dc.description.references Sabourin, L. A. & Rudnicki, M. A. The molecular regulation of myogenesis. Clin Genet 57, 16–25 (2001). es_ES
dc.description.references Mancini, A. et al. Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 1, 36 (2011). es_ES
dc.description.references Sastry, S. K. et al. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J Cell Biol 144, 1295–1309 (1999). es_ES
dc.description.references Chatzizacharias, N. A., Kouraklis, G. P. & Theocharis, S. E. Disruption of FAK signaling: A side mechanism in cytotoxicity. Toxicology 245, 1–10 (2008). es_ES
dc.description.references Clemente, C. F. M. Z., Corat, M. A. F., Saad, S. T. O. & Franchini, K. G. Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am J Physiol Regul Integr Comp Physiol 289, R862–R870 (2005). es_ES
dc.description.references Quach, N. L. & Rando, T. A. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293, 38–52 (2006). es_ES
dc.description.references Kirschner, C. M., Alge, D. L., Gould, S. T. & Anseth, K. S. Clickable, Photodegradable Hydrogels to Dynamically Modulate Valvular Interstitial Cell Phenotype. Adv Healthc Mater (2014) 10.1002/adhm.201300288. es_ES
dc.description.references Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12, 458–65 (2013). es_ES
dc.description.references Ulijn, R. V. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16, 2217 (2006). es_ES
dc.description.references Makarenkova, H. et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal 2, ra55 (2009). es_ES
dc.description.references Silva, A. K., Richard, C., Bessodes, M., Scherman, D. & Merten, O. W. Growth factor delivery approaches in hydrogels. Biomacromolecules 10, 9–18 (2009). es_ES
dc.description.references Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23, 47–55 (2005). es_ES
dc.description.references Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater 18, 2679–+ (2006). es_ES
dc.description.references Moon, J. J., Hahn, M. S., Kim, I., Nsiah, B. A. & West, J. L. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A 15, 579–585 (2009). es_ES
dc.description.references Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & García, A. J. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A 107, 3323–3328 (2010). es_ES
dc.description.references Patterson, J., Martino, M. M. & Hubbell, J. A. Biomimetic materials in tissue engineering. Mater Today 13, 14–22 (2010). es_ES
dc.description.references Cortes-Perez, N. G., da Costa Medina, L. F., Lefevre, F., Langella, P. & Bermudez-Humaran, L. G. Production of biologically active CXC chemokines by Lactococcus lactis: evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine 26, 5778–5783 (2008). es_ES
dc.description.references Cutler, S. M. & García, A. J. Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials 24, 1759–1770 (2003). es_ES
dc.description.references Rico, P., González-García, C., Petrie, T. A., García, A. J. & Salmerón-Sánchez, M. Molecular assembly and biological activity of a recombinant fragment of fibronectin (FNIII7–10) on poly(ethyl acrylate). Colloids Surfaces B Biointerfaces 78, 310–316 (2010). es_ES
dc.description.references Van Oss, C. J., Good, R. J. & Chaudhury, M. K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111, 378–390 (1986). es_ES
dc.description.references Van Loosdrecht, M. C., Lyklema, J., Norde, W., Schraa, G. & Zehnder, A. J. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53, 1898–1901 (1987). es_ES
dc.description.references Godon, J.-J., Jury, K., Shearman, C. A. & Gasson, M. J. The Lactococcus lactis sex-factor aggregation gene cluA. Mol Microbiol 12, 655–663 (1994). es_ES
dc.description.references Giaouris, E., Chapot-Chartier, M.-P. P. & Briandet, R. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131, 2–9 (2009). es_ES
dc.description.references Gulot, E. et al. Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two-photon excitation. Photochem Photobiol 75, 570–578 (2002). es_ES
dc.description.references Habimana, O., Meyrand, M., Meylheuc, T., Kulakauskas, S. & Briandet, R. Genetic features of resident biofilms determine attachment of Listeria monocytogenes. Appl Environ Microbiol 75, 7814–7821 (2009). es_ES
dc.description.references Rieu, A. et al. Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74, 4491–4497 (2008). es_ES
dc.description.references Oxaran, V. et al. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 7, e50989 (2012). es_ES
dc.description.references Petrie, T. A., Capadona, J. R., Reyes, C. D. & García, A. J. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 27, 5459–70 (2006). es_ES
dc.description.references Schotte, L. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme Microb Technol 27, 761–765 (2000). es_ES
dc.description.references Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72, 3916–3923 (2006). es_ES
dc.description.references Zaidi, A. H., Bakkes, P. J., Krom, B. P., van der Mei, H. C. & Driessen, A. J. M. Cholate-stimulated biofilm formation by Lactococcus lactis cells. Appl Environ Microbiol 77, 2602–10 (2011). es_ES
dc.description.references Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–82 (2012). es_ES
dc.description.references Araujo, J. C. Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J Electron Microsc (Tokyo) 52, 429–433 (2003). es_ES
dc.description.references Dufrêne, Y. F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3, 1132–8 (2008). es_ES
dc.description.references Bhaduri, S. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neurotoxigenic Clostridium botulinum. Foodborne Pathog Dis 9, 172–4 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem