- -

Strong mixing measures for C_0-semigroups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Strong mixing measures for C_0-semigroups

Show full item record

Murillo Arcila, M.; Peris Manguillot, A. (2015). Strong mixing measures for C_0-semigroups. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 109(1):101-115. doi:10.1007/s13398-014-0169-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71428

Files in this item

Item Metadata

Title: Strong mixing measures for C_0-semigroups
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
Issued date:
Abstract:
Our purpose is to obtain a very effective and general method to prove that certain C0-semigroups admit invariant strongly mixing measures. More precisely, we show that the frequent hypercyclicity criterion for C0-semigroups ...[+]
Subjects: Semigroup of operators , Strongly mixing measure , Frequently hypercyclic
Copyrigths: Cerrado
Source:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. (issn: 1578-7303 )
DOI: 10.1007/s13398-014-0169-3
Publisher:
Springer
Publisher version: http://dx.doi.org/10.1007/s13398-014-0169-3
Thanks:
This work is supported in part by MEC and FEDER, Projects MTM2010-14909 and MTM2013-47093-P, and by GVA, Project PROMETEOII/2013/013. The first author was also supported by a grant from the FPU Program of MEC.
Type: Artículo

References

Albanese, A., Barrachina, X., Mangino, E., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12, 2069–2082 (2013)

Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Eq. Appl. 1–9 (2011)

Badea, C., Grivaux, S.: Unimodular eigenvalues uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007) [+]
Albanese, A., Barrachina, X., Mangino, E., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12, 2069–2082 (2013)

Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Eq. Appl. 1–9 (2011)

Badea, C., Grivaux, S.: Unimodular eigenvalues uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)

Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics 329, 439–444 (2001)

Banasiak, J., Lachowicz, M., Moszyński, M.: Semigroups for generalized birth-and-death equations in $$l^p$$ l p spaces. Semigroup Forum 73, 175–193 (2006)

Banasiak, J., Lachowicz, M., Moszyński, M.: Chaotic behaviour of semigroups related to the process of gene amplification–deamplification with cell proliferation. Math. Biosci. 206, 200–215 (2007)

Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12, 959–972 (2005)

Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation-stability and chaos. Discret. Contin. Dyn. Syst. 29, 67–79 (2011)

Barrachina, X., Peris, A.: Distributionally chaotic translation semigroups. J. Differ. Equ. Appl. 18, 751–761 (2012)

Bayart, F.: Dynamics of holomorphic groups. Semigroup Forum 82, 229–241 (2011)

Bayart, F., Bermúdez, T.: Semigroups of chaotic operators. Bull. Lond. Math. Soc. 41, 823–830 (2009)

Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358, 5083–5117 (2006)

Bayart, F., Matheron, É.: Dynamics of linear operators. Cambridge University Press, Cambridge (2009)

Bayart, F., Matheron, É: Mixing operators and small subsets of the circle. Ergod. Theory Dynam. Syst. (to appear)

Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

Bermúdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Math. 170, 57–75 (2005)

Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergod. Theory Dynam. Systems 27, 383–404 (2007). Erratum: Ergodic Theory Dynam. Systems 29 (2009), 1993–1994.

Conejero, J.A., Mangino, E.M.: Hypercyclic semigroups generated by Ornstein–Uhlenbeck operators. Mediterr. J. Math. 7, 101–109 (2010)

Conejero, J.A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $$C_0$$ C 0 -semigroup. J. Funct. Anal. 244, 342–348 (2007)

Conejero, J.A., Peris, A.: Hypercyclic translation $$C_0$$ C 0 -semigroups on complex sectors. Discret. Contin. Dyn. Syst. 25, 1195–1208 (2009)

Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifurc. Chaos 20, 2943–2947 (2010)

Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dynam. Systems 17, 793–819 (1997)

Diestel, J., Uhl, J.J.: Vector measures, Mathematical Surveys 15. American Mathematical Society, Providence (1977)

Emamirad, H., Goldstein, G., Goldstein, J.A.: Chaotic solution for the Black–Scholes equation. Proc. Am. Math. Soc. 140, 2043–2052 (2012)

Flytzanis, E.: Unimodular eigenvalues and linear chaos in Hilbert spaces. Geom. Funct. Anal. 5, 1–13 (1995)

Goldstein, J.A., Mininni, R.M., Romanelli, S.: A new explicit formula for the solution of the Black–Merton–Scholes equation. Infin. Dimens. Stoch. Analy., World Series Publ., 226–235 (2008)

Grivaux, S.: A probabilistic version of the frequent hypercyclicity criterion. Studia Math. 176, 279–290 (2006)

Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos. Universitext. Springer-Verlag London Ltd., London (2011)

Halmos, P.R.: Measure Theory. D. Van Nostrand Company Inc, New York (1950)

Ji, L., Weber, A.: Dynamics of the heat semigroup on symmetric spaces. Ergod. Theory Dynam. Systems 30, 457–468 (2010)

Kalmes, T.: Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators. J. Math. Anal. Appl. 365, 363–375 (2010)

Mangino, E., Peris, A.: Frequently hypercyclic semigroups. Studia Math. 202, 227–242 (2011)

Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013)

Parthasarathy, K.R.: Probability measures on metric spaces. Academic Press Inc, New York, London (1967)

Rudnicki, R.: Invariant measures for the flow of a first order partial differential equation. Ergod. Theory Dynam. Systems 5, 437–443 (1985)

Rudnicki, R.: Strong ergodic properties of a first-order partial differential equation. J. Math. Anal. Appl. 133, 14–26 (1988)

Rudnicki, R.: Gaussian measure-preserving linear transformations. Univ. Iagel. Acta Math. 30, 105–112 (1993)

Rudnicki, R.: Chaoticity and invariant measures for a cell population model. J. Math. Anal. Appl. 339, 151–165 (2012)

[-]

This item appears in the following Collection(s)

Show full item record