- -

Dielectric function of dense plasmas, their stopping power, and sum rules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dielectric function of dense plasmas, their stopping power, and sum rules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arkhipov, Yu. V. es_ES
dc.contributor.author Ashikbayeva, A. B. es_ES
dc.contributor.author Askaruly, A. es_ES
dc.contributor.author Davletov, A. E. es_ES
dc.contributor.author Tkachenko Gorski, Igor Mijail es_ES
dc.date.accessioned 2016-10-11T06:47:38Z
dc.date.available 2016-10-11T06:47:38Z
dc.date.issued 2014-11-14
dc.identifier.issn 1539-3755
dc.identifier.uri http://hdl.handle.net/10251/71581
dc.description.abstract Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under Grants No. 1128/GF, No. 1129/GF, and No. 1099/GF. Yu. V.A. expresses gratitude for financial support provided by the Ministry by a grant "The Best Professor" and I.M.T. is grateful to the al-Farabi Kazakh National University for its hospitality. We are also grateful to I.V. Morozov for providing numerical data published in [31,32]. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation grant "The Best Professor" es_ES
dc.relation.ispartof Physical Review E es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PACS number(s): 52.25.Mq, 52.27.Aj es_ES
dc.subject ONE-COMPONENT PLASMAS es_ES
dc.subject RELAXATION-TIME APPROXIMATION es_ES
dc.subject COUPLED COULOMB LIQUIDS es_ES
dc.subject LOCAL-FIELD CORRECTION es_ES
dc.subject ELECTRON-GAS es_ES
dc.subject ENERGY-LOSS es_ES
dc.subject RESPONSE FUNCTION es_ES
dc.subject CHARGED-PARTICLES es_ES
dc.subject QUANTUM PLASMAS es_ES
dc.subject IONS es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dielectric function of dense plasmas, their stopping power, and sum rules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevE.90.053102
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1129%2FGF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1128%2FGF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1099%2FGF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Arkhipov, YV.; Ashikbayeva, AB.; Askaruly, A.; Davletov, AE.; Tkachenko Gorski, IM. (2014). Dielectric function of dense plasmas, their stopping power, and sum rules. Physical Review E. 90(5). https://doi.org/10.1103/PhysRevE.90.053102 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevE.90.053102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 281224 es_ES
dc.identifier.eissn 1550-2376
dc.contributor.funder Ministry of Education and Science, República de Kazajistán es_ES
dc.description.references Glenzer, S. H., Spears, B. K., Edwards, M. J., Alger, E. T., Berger, R. L., Bleuel, D. L., … Castro, C. (2012). First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility. Plasma Physics and Controlled Fusion, 54(4), 045013. doi:10.1088/0741-3335/54/4/045013 es_ES
dc.description.references Kreĭn, M., & Nudel′man, A. (1977). The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs. doi:10.1090/mmono/050 es_ES
dc.description.references Adamyan, V. M., & Tkachenko, I. M. (2003). Sum rules and exact relations for quantal Coulomb systems. Contributions to Plasma Physics, 43(56), 252-257. doi:10.1002/ctpp.200310020 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Meirkanova, G. M., & Tkachenko, I. M. (2007). Collective and static properties of model two-component plasmas. Physical Review E, 76(2). doi:10.1103/physreve.76.026403 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Tkachenko, I. M., & Zwicknagel, G. (2010). Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach. Physical Review E, 81(2). doi:10.1103/physreve.81.026402 es_ES
dc.description.references Vorberger, J., Donko, Z., Tkachenko, I. M., & Gericke, D. O. (2012). Dynamic Ion Structure Factor of Warm Dense Matter. Physical Review Letters, 109(22). doi:10.1103/physrevlett.109.225001 es_ES
dc.description.references Golden, K. I., & Kalman, G. J. (2013). Sum rules for electron-hole bilayer and two-dimensional point dipole systems. Physical Review E, 88(3). doi:10.1103/physreve.88.033107 es_ES
dc.description.references Arkhipov, Y. V., Ashikbayeva, A. B., Askaruly, A., Davletov, A. E., & Tkachenko, I. M. (2013). Optical Properties of Kelbg-Pseudopotential-Modelled Plasmas. Contributions to Plasma Physics, 53(4-5), 375-384. doi:10.1002/ctpp.201200113 es_ES
dc.description.references Mermin, N. D. (1970). Lindhard Dielectric Function in the Relaxation-Time Approximation. Physical Review B, 1(5), 2362-2363. doi:10.1103/physrevb.1.2362 es_ES
dc.description.references Morawetz, K., & Fuhrmann, U. (2000). Momentum conservation and local field corrections for the response of interacting Fermi gases. Physical Review E, 62(3), 4382-4385. doi:10.1103/physreve.62.4382 es_ES
dc.description.references Morawetz, K., & Fuhrmann, U. (2000). General response function for interacting quantum liquids. Physical Review E, 61(3), 2272-2280. doi:10.1103/physreve.61.2272 es_ES
dc.description.references Atwal, G. S., & Ashcroft, N. W. (2002). Relaxation of an electron system: Conserving approximation. Physical Review B, 65(11). doi:10.1103/physrevb.65.115109 es_ES
dc.description.references Atwal, G. S., & Ashcroft, N. W. (2003). Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits. Physical Review B, 67(23). doi:10.1103/physrevb.67.233104 es_ES
dc.description.references Dolgov, O. V., Kirzhnits, D. A., & Maksimov, E. G. (1981). On an admissible sign of the static dielectric function of matter. Reviews of Modern Physics, 53(1), 81-93. doi:10.1103/revmodphys.53.81 es_ES
dc.description.references Максимов, Е. Г., & Долгов, О. В. (2007). О возможных механизмах высокотемпературной сверхпроводимости. Uspekhi Fizicheskih Nauk, 177(9), 983. doi:10.3367/ufnr.0177.200709c.0983 es_ES
dc.description.references Maksimov, E. G., Dolgov, O. V., & Dolgov, O. V. (2007). Physics-Uspekhi, 50(9), 933. doi:10.1070/pu2007v050n09abeh006213 es_ES
dc.description.references Reinholz, H., Redmer, R., Röpke, G., & Wierling, A. (2000). Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma. Physical Review E, 62(4), 5648-5666. doi:10.1103/physreve.62.5648 es_ES
dc.description.references Selchow, A., Röpke, G., Wierling, A., Reinholz, H., Pschiwul, T., & Zwicknagel, G. (2001). Dynamic structure factor for a two-component model plasma. Physical Review E, 64(5). doi:10.1103/physreve.64.056410 es_ES
dc.description.references Kalman, G., & Golden, K. I. (1984). Theory of partial response functions in multicomponent plasmas. Physical Review A, 29(2), 844-853. doi:10.1103/physreva.29.844 es_ES
dc.description.references Morawetz, K. (2002). Dynamical local field, compressibility, and frequency sum rules for quasiparticles. Physical Review B, 66(7). doi:10.1103/physrevb.66.075125 es_ES
dc.description.references Das, A. K. (1975). The relaxation-time approximation in the RPA dielectric formulation. Journal of Physics F: Metal Physics, 5(11), 2035-2040. doi:10.1088/0305-4608/5/11/015 es_ES
dc.description.references Gouedard, C., & Deutsch, C. (1978). Dense electron‐gas response at any degeneracy. Journal of Mathematical Physics, 19(1), 32-38. doi:10.1063/1.523508 es_ES
dc.description.references Arista, N. R., & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Physical Review A, 29(3), 1471-1480. doi:10.1103/physreva.29.1471 es_ES
dc.description.references Barriga-Carrasco, M. D. (2006). Effects of target plasma electron-electron collisions on correlated motion of fragmentedH2+protons. Physical Review E, 73(2). doi:10.1103/physreve.73.026401 es_ES
dc.description.references Barriga-Carrasco, M. D. (2007). Influence of damping on proton energy loss in plasmas of all degeneracies. Physical Review E, 76(1). doi:10.1103/physreve.76.016405 es_ES
dc.description.references Barriga-Carrasco, M. D. (2009). Dynamical local field corrections on energy loss in plasmas of all degeneracies. Physical Review E, 79(2). doi:10.1103/physreve.79.027401 es_ES
dc.description.references Barriga-Carrasco, M. D. (2010). Proton stopping using a full conserving dielectric function in plasmas at any degeneracy. Physical Review E, 82(4). doi:10.1103/physreve.82.046403 es_ES
dc.description.references Casas, D., Barriga-Carrasco, M. D., & Rubio, J. (2013). Evaluation of slowing down of proton and deuteron beams in CH2, LiH, and Al partially ionized plasmas. Physical Review E, 88(3). doi:10.1103/physreve.88.033102 es_ES
dc.description.references Ballester, D., & Tkachenko, I. M. (2008). Fast-Projectile Stopping Power of Quantal Multicomponent Strongly Coupled Plasmas. Physical Review Letters, 101(7). doi:10.1103/physrevlett.101.075002 es_ES
dc.description.references Thiele, R., Sperling, P., Chen, M., Bornath, T., Fäustlin, R. R., Fortmann, C., … Redmer, R. (2010). Thomson scattering on inhomogeneous targets. Physical Review E, 82(5). doi:10.1103/physreve.82.056404 es_ES
dc.description.references Reinholz, H., Morozov, I., Röpke, G., & Millat, T. (2004). Internal versus external conductivity of a dense plasma: Many-particle theory and simulations. Physical Review E, 69(6). doi:10.1103/physreve.69.066412 es_ES
dc.description.references Morozov, I., Reinholz, H., Röpke, G., Wierling, A., & Zwicknagel, G. (2005). Molecular dynamics simulations of optical conductivity of dense plasmas. Physical Review E, 71(6). doi:10.1103/physreve.71.066408 es_ES
dc.description.references Baus, M., Hansen, J.-P., & Sjögren, L. (1981). Electrical conductivity of a strongly coupled hydrogen plasma. Physics Letters A, 82(4), 180-182. doi:10.1016/0375-9601(81)90115-8 es_ES
dc.description.references Esser, A., Redmer, R., & Röpke, G. (2003). Interpolation formula for the electrical conductivity of nonideal plasmas. Contributions to Plasma Physics, 43(1), 33-38. doi:10.1002/ctpp.200310004 es_ES
dc.description.references Fortmann, C., Wierling, A., & Röpke, G. (2010). Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas. Physical Review E, 81(2). doi:10.1103/physreve.81.026405 es_ES
dc.description.references Hong, J., & Lee, M. H. (1985). Exact Dynamically Convergent Calculations of the Frequency-Dependent Density Response Function. Physical Review Letters, 55(22), 2375-2378. doi:10.1103/physrevlett.55.2375 es_ES
dc.description.references Hong, J., & Kim, C. (1991). Dynamic structure of strongly coupled one-component plasmas. Physical Review A, 43(4), 1965-1971. doi:10.1103/physreva.43.1965 es_ES
dc.description.references Kalman, G., & Golden, K. I. (1990). Response function and plasmon dispersion for strongly coupled Coulomb liquids. Physical Review A, 41(10), 5516-5527. doi:10.1103/physreva.41.5516 es_ES
dc.description.references Golden, K. I., Kalman, G., & Wyns, P. (1992). Dielectric tensor and shear-mode dispersion for strongly coupled Coulomb liquids: Three-dimensional one-component plasmas. Physical Review A, 46(6), 3454-3462. doi:10.1103/physreva.46.3454 es_ES
dc.description.references Filippov, A. V., Starostin, A. N., Tkachenko, I. M., & Fortov, V. E. (2011). Dust acoustic waves in complex plasmas at elevated pressure. Physics Letters A, 376(1), 31-38. doi:10.1016/j.physleta.2011.10.030 es_ES
dc.description.references Morawetz, K., Fuhrmann, U., & Walke, R. (1999). Damping of giant resonances in asymmetric nuclear matter. Nuclear Physics A, 649(1-4), 348-354. doi:10.1016/s0375-9474(99)00083-4 es_ES
dc.description.references Bethe, H. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen der Physik, 397(3), 325-400. doi:10.1002/andp.19303970303 es_ES
dc.description.references Young, F. C., Mosher, D., Stephanakis, S. J., Goldstein, S. A., & Mehlhorn, T. A. (1982). Measurements of Enhanced Stopping of 1-MeV Deuterons in Target-Ablation Plasmas. Physical Review Letters, 49(8), 549-553. doi:10.1103/physrevlett.49.549 es_ES
dc.description.references Belyaev, G., Basko, M., Cherkasov, A., Golubev, A., Fertman, A., Roudskoy, I., … Tauschwitz, A. (1996). Measurement of the Coulomb energy loss by fast protons in a plasma target. Physical Review E, 53(3), 2701-2707. doi:10.1103/physreve.53.2701 es_ES
dc.description.references Golubev, A., Basko, M., Fertman, A., Kozodaev, A., Mesheryakov, N., Sharkov, B., … Iosilevski, I. (1998). Dense plasma diagnostics by fast proton beams. Physical Review E, 57(3), 3363-3367. doi:10.1103/physreve.57.3363 es_ES
dc.description.references Fertman, A. D., Mutin, T. Y., Basko, M. M., Golubev, A. A., Kulevoy, T. V., Kuybeda, R. P., … Sharkov, B. Y. (2006). Stopping power measurements for 100-keV/u Cu ions in hydrogen and nitrogen. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 247(2), 199-204. doi:10.1016/j.nimb.2006.02.003 es_ES
dc.description.references Gericke, D. O., Schlanges, M., & Bornath, T. (2002). Stopping power of nonideal, partially ionized plasmas. Physical Review E, 65(3). doi:10.1103/physreve.65.036406 es_ES
dc.description.references Gus’kov, S. Y., Zmitrenko, N. V., Il’in, D. V., Levkovskii, A. A., Rozanov, V. B., & Sherman, V. E. (2009). A method for calculating the effective charge of ions decelerated in a hot dense plasma. Plasma Physics Reports, 35(9), 709-718. doi:10.1134/s1063780x09090013 es_ES
dc.description.references Ballester, D., & Tkachenko, I. M. (2009). Energy losses of fast heavy-ion projectiles in dense hydrogen plasmas. Journal of Physics A: Mathematical and Theoretical, 42(21), 214035. doi:10.1088/1751-8113/42/21/214035 es_ES
dc.description.references Vauzour, B., Santos, J. J., Debayle, A., Hulin, S., Schlenvoigt, H.-P., Vaisseau, X., … Yahia, V. (2012). Relativistic High-Current Electron-Beam Stopping-Power Characterization in Solids and Plasmas: Collisional Versus Resistive Effects. Physical Review Letters, 109(25). doi:10.1103/physrevlett.109.255002 es_ES
dc.description.references Arkhipov, Y. V., Ashikbayeva, A. B., Askaruly, A., Davletov, A. E., & Tkachenko, I. M. (2013). Stopping of relativistic projectiles in two-component plasmas. EPL (Europhysics Letters), 104(3), 35003. doi:10.1209/0295-5075/104/35003 es_ES
dc.description.references Fermi, E., & Teller, E. (1947). The Capture of Negative Mesotrons in Matter. Physical Review, 72(5), 399-408. doi:10.1103/physrev.72.399 es_ES
dc.description.references Arista, N. R., & Brandt, W. (1981). Energy loss and straggling of charged particles in plasmas of all degeneracies. Physical Review A, 23(4), 1898-1905. doi:10.1103/physreva.23.1898 es_ES
dc.description.references Kraeft, W. D., & Strege, B. (1988). Energy loss of charged particles moving in a plasma. Physica A: Statistical Mechanics and its Applications, 149(1-2), 313-322. doi:10.1016/0378-4371(88)90222-1 es_ES
dc.description.references Bret, A., & Deutsch, C. (1993). Dielectric response function and stopping power of a two-dimensional electron gas. Physical Review E, 48(4), 2994-3002. doi:10.1103/physreve.48.2994 es_ES
dc.description.references Morawetz, K., & Röpke, G. (1996). Stopping power in nonideal and strongly coupled plasmas. Physical Review E, 54(4), 4134-4146. doi:10.1103/physreve.54.4134 es_ES
dc.description.references Ortner, J., & Tkachenko, I. M. (2001). Stopping power of strongly coupled electronic plasmas: Sum rules and asymptotic forms. Physical Review E, 63(2). doi:10.1103/physreve.63.026403 es_ES
dc.description.references Barkas, W. H., Dyer, J. N., & Heckman, H. H. (1963). Resolution of theΣ−-Mass Anomaly. Physical Review Letters, 11(1), 26-28. doi:10.1103/physrevlett.11.26 es_ES
dc.description.references Gardes, D., Servajean, A., Kubica, B., Fleurier, C., Hong, D., Deutsch, C., & Maynard, G. (1992). Stopping of multicharged ions in dense and fully ionized hydrogen. Physical Review A, 46(8), 5101-5111. doi:10.1103/physreva.46.5101 es_ES
dc.description.references Arista, N. R. (1985). Low-velocity stopping power of semidegenerate quantum plasmas. Journal of Physics C: Solid State Physics, 18(26), 5127-5134. doi:10.1088/0022-3719/18/26/023 es_ES
dc.description.references Maynard, G., & Deutsch, C. (1982). Energy loss and straggling of ions with any velocity in dense plasmas at any temperature. Physical Review A, 26(1), 665-668. doi:10.1103/physreva.26.665 es_ES
dc.description.references Yan, X.-Z., Tanaka, S., Mitake, S., & Ichimaru, S. (1985). Theory of interparticle correlations in dense, high-temperature plasmas. IV. Stopping power. Physical Review A, 32(3), 1785-1789. doi:10.1103/physreva.32.1785 es_ES
dc.description.references Tanaka, S., & Ichimaru, S. (1985). Stopping Power of Degenerate Electron Liquid at Metallic Densities. Journal of the Physical Society of Japan, 54(7), 2537-2542. doi:10.1143/jpsj.54.2537 es_ES
dc.description.references Nagy, I., L�szl�, J., & Giber, J. (1985). Dynamic local field correction in the calculation of electronic stopping power. Zeitschrift f�r Physik A Atoms and Nuclei, 321(2), 221-223. doi:10.1007/bf01493441 es_ES
dc.description.references Nagy, I., Arnau, A., & Echenique, P. M. (1993). Screening and stopping of charged particles in an electron gas. Physical Review B, 48(8), 5650-5652. doi:10.1103/physrevb.48.5650 es_ES
dc.description.references Dabrowski, B. (1986). Dynamical local-field factor in the response function of an electron gas. Physical Review B, 34(8), 4989-4995. doi:10.1103/physrevb.34.4989 es_ES
dc.description.references Gericke, D. ., Schlanges, M., & Kraeft, W. . (1996). Stopping power of a quantum plasma — T-matrix approximation and dynamical screening. Physics Letters A, 222(4), 241-245. doi:10.1016/0375-9601(96)00654-8 es_ES
dc.description.references Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Starikov, K. V. (2000). Stopping power in dense, high-temperature plasmas. Plasma Physics and Controlled Fusion, 42(4), 455-462. doi:10.1088/0741-3335/42/4/307 es_ES
dc.description.references Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Starikov, K. V. (2001). Stopping Power in Semiclassical, Collisional Plasmas. Physica Scripta, 63(3), 194-196. doi:10.1238/physica.regular.063a00194 es_ES
dc.description.references Abrikosov, A. A., Gorkov, L. P., Dzyaloshinski, I. E., Silverman, R. A., & Weiss, G. H. (1964). Methods of Quantum Field Theory in Statistical Physics. Physics Today, 17(4), 78-80. doi:10.1063/1.3051555 es_ES
dc.description.references Kugler, A. A. (1975). Theory of the local field correction in an electron gas. Journal of Statistical Physics, 12(1), 35-87. doi:10.1007/bf01024183 es_ES
dc.description.references Varentsov, D., Tkachenko, I. M., & Hoffmann, D. H. H. (2005). Statistical approach to beam shaping. Physical Review E, 71(6). doi:10.1103/physreve.71.066501 es_ES
dc.description.references Röpke, G., Selchow, A., Wierling, A., & Reinholz, H. (1999). Lindhard dielectric function in the relaxation-time approximation and generalized linear response theory. Physics Letters A, 260(5), 365-369. doi:10.1016/s0375-9601(99)00548-4 es_ES
dc.description.references Deutsch, C., Tahir, N. A., Barriga-Carrasco, M., Ceban, V., Fromy, P., Gilles, D., … Volpe, L. (2014). Multiple scattering in electron fluid and energy loss in multi-ionic targets. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 733, 39-44. doi:10.1016/j.nima.2013.05.097 es_ES
dc.description.references Tanaka, S., & Ichimaru, S. (1987). Dynamic theory of correlations in strongly coupled, classical one-component plasmas: Glass transition in the generalized viscoelastic formalism. Physical Review A, 35(11), 4743-4754. doi:10.1103/physreva.35.4743 es_ES
dc.description.references Glenzer, S. H., & Redmer, R. (2009). X-ray Thomson scattering in high energy density plasmas. Reviews of Modern Physics, 81(4), 1625-1663. doi:10.1103/revmodphys.81.1625 es_ES
dc.description.references Deutsch, C. (1977). Nodal expansion in a real matter plasma. Physics Letters A, 60(4), 317-318. doi:10.1016/0375-9601(77)90111-6 es_ES
dc.description.references Deutsch, C., Gombert, M. M., & Minoo, H. (1978). Classical modelization of symmetry effects in the dense high-temperature electron gas. Physics Letters A, 66(5), 381-382. doi:10.1016/0375-9601(78)90066-x es_ES
dc.description.references Errata. (1979). Physics Letters A, 72(6), 481. doi:10.1016/0375-9601(79)90853-3 es_ES
dc.description.references DEUTSCH, C., & FROMY, P. (2013). Negative pion stopping in ultra dense and hot DT targets of ICF fast ignition concern. Journal of Plasma Physics, 79(4), 391-395. doi:10.1017/s0022377813000068 es_ES
dc.description.references Shukla, P. K., & Akbari-Moghanjoughi, M. (2013). Hydrodynamic theory for ion structure and stopping power in quantum plasmas. Physical Review E, 87(4). doi:10.1103/physreve.87.043106 es_ES
dc.description.references Nersisyan, H. B., Veysman, M. E., Andreev, N. E., & Matevosyan, H. H. (2014). Dielectric function of a collisional plasma for arbitrary ionic charge. Physical Review E, 89(3). doi:10.1103/physreve.89.033102 es_ES
dc.description.references Grabowski, P. E., Surh, M. P., Richards, D. F., Graziani, F. R., & Murillo, M. S. (2013). Molecular Dynamics Simulations of Classical Stopping Power. Physical Review Letters, 111(21). doi:10.1103/physrevlett.111.215002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem